Boundary Layer Flow over a Curved Surface Imbedded in Porous Medium

2019 ◽  
Vol 71 (3) ◽  
pp. 344 ◽  
Author(s):  
Shafiq Ahmad ◽  
S. Nadeem ◽  
Noor Muhammad
2014 ◽  
Vol 44 (2) ◽  
pp. 149-157
Author(s):  
A. M. RASHAD

 A boundary-layer analysis is presented for the natural convec tion boundary layer flow about a sphere embedded in a porous medium filled with a nanofluid using Brinkman-ForchheimerDarcy extended model. The model used for the nanofluid incorporates the ef fects of Brownian motion and thermophoresis. The governing partial differential equa tions are transformed into a set of nonsimilar equations and solved numerically by an efficient implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity, temperature, and nanoparticles volume fraction profiles as well as the local skin-friction coefficient, local Nusselt and Sherwood numbers is illustrated graphically to show interesting features of the solutions.


Sign in / Sign up

Export Citation Format

Share Document