Calculation of the Longitudinal Structure Function from Regge-Like Behaviour of the Gluon Distribution Function in Leading Order Approximation at Low x

2007 ◽  
Vol 24 (5) ◽  
pp. 1187-1190 ◽  
Author(s):  
G.R Boroun ◽  
B Rezaie
2009 ◽  
Vol 18 (01) ◽  
pp. 131-140 ◽  
Author(s):  
G. R. BOROUN

We present an analytic formula to extract the longitudinal structure function in the next-to-leading order of the perturbation theory at low x, from the Regge-like behavior of the gluon distribution and the structure function at this limit. In this approach, the longitudinal structure function has the hard-Pomeron behavior. The determined values are compared with the H1 data and MRST model. All results can consistently be described within the framework of perturbative QCD, which essentially show increases as x decreases.


2012 ◽  
Vol 27 (31) ◽  
pp. 1250179 ◽  
Author(s):  
H. NEMATOLLAHI ◽  
M. M. YAZDANPANAH ◽  
A. MIRJALILI

We compute the longitudinal structure function of the proton (FL) at the next-to-next-to-leading order (NNLO) approximation. For this purpose, we should know the flavor-singlet, non-singlet and gluon distribution functions of the proton. We use the chiral quark model (χQM) to determine these distributions. Finally, we compare the results of FL with the recent ZEUZ and H1 experimental data and some fitting parametrizations. Our results are in good agreement with the data and the related fittings.


Sign in / Sign up

Export Citation Format

Share Document