Numerical Simulation of a P + a -SiC:H/N + Poly-Si Solar Cell with High Efficiency and Fill Factor

2012 ◽  
Vol 29 (8) ◽  
pp. 087302 ◽  
Author(s):  
Qing-Yi Shao ◽  
A-Qing Chen ◽  
Kai-Gui Zhu ◽  
Juan Zhang
2013 ◽  
Vol 712-715 ◽  
pp. 309-312 ◽  
Author(s):  
Ming Kun Xu

P+a-SiC/ I nc-Si/N+a-Si structure solar cells is simulated by AMPS-1D program package to characterize the new thin film solar cell. In order to analyze the characteristics of the device, the thickness of layer are considered. The results show that the thickness of layer and the value of layer have a great effect on the conversion efficiency. Our results suggest a high performance P a-SiC/ I nc-Si/N a-Si structure solar cells with high efficiency of 14.411% and fill factor of 0.738. The simulation result is potentially valuable in exploring gradual bandgap P+a-SiC/I nc-Si/N+a-Si structure solar cells with high performance.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Chang-Wei Liu ◽  
Zingway Pei ◽  
Shu-Tong Chang ◽  
Ren-Yui Ho ◽  
Min-Wei Ho ◽  
...  

AbstractOne of the parameters that limit the efficiency of a thin film solar cell, especially the a-Si and the nc-Si solar cell is the cell thickness. Although thicker film can absorb most of the sun light, the optical generated carriers will recombination through the numerous gap states in the film that obtained lower short circuit current and fill factor. In the controversy, thinner film could not absorb enough sun light that also limit the short circuit current. In this works, we utilize nanowire structure to solve the conflict between the light absorption and the carrier transport. The designed structure has ZnO:Al nanowire array on the substrate. The p-i-n a-Si solar cell structure is grown along the surface of each ZnO: Al nanowire sequentially. Under sunlight illumination, the light is absorbed in the axis direction of the nanowire. However, the carrier transport is along the radial direction of the solar cell. Therefore, the long nanowire could absorb most of the solar light. In the mean time, the thickness of the solar cell still is thin enough for photo-generated carrier transport. The dependence of short circuit current, open circuit voltage and fill factor to the length, diameter and density of ZnO:Al nanowires were simulated.


2012 ◽  
Vol 60 (12) ◽  
pp. 2075-2078 ◽  
Author(s):  
Seok-Joo Byun ◽  
Seok Yong Byun ◽  
Jangkyo Lee ◽  
Taek Sung Lee ◽  
Won Mok Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document