Path integral evaluation of the Bloch density matrix for an oscillator in a magnetic field

1986 ◽  
Vol 19 (15) ◽  
pp. 3013-3016 ◽  
Author(s):  
J M Manoyan
1995 ◽  
Vol 36 (4) ◽  
pp. 1602-1615 ◽  
Author(s):  
T. Boudjedaa ◽  
A. Bounames ◽  
L. Chetouani ◽  
T. F. Hammann ◽  
Kh. Nouicer

Author(s):  
M. V. Carpio-bernido ◽  
E. B. Gravador ◽  
C. C. Bernido

1994 ◽  
Vol 147 ◽  
pp. 565-570
Author(s):  
D. Engelhardt ◽  
I. Bues

AbstractThe internal structure of a white dwarf may be changed by a strong magnetic field. A local model of the electrons is constructed within a thermal density matrix formalism, essentially a Heisenberg magnetism model. This results in a matrix Fermi function which is used to construct an isothermal model of the electron crystal. The central density of the crystal is 108kg/m3 independent of the magnetic field within the plasma and therefore lower than the relativistic density, whereas this density is constant until the Fermi momentum x f = 0.3 * me * c. Chandrasekhar masses up to 1.44 * 1.4M0 are possible for polarizations of the plasma zone lower than 0.5, if the temperature is close to the Curie point, whereas the crystal itself destabilizes the white dwarf dependent on temperature.


2020 ◽  
Vol 75 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Bhavya Bhatt ◽  
Manish Ram Chander ◽  
Raj Patil ◽  
Ruchira Mishra ◽  
Shlok Nahar ◽  
...  

AbstractThe measurement problem and the absence of macroscopic superposition are two foundational problems of quantum mechanics today. One possible solution is to consider the Ghirardi–Rimini–Weber (GRW) model of spontaneous localisation. Here, we describe how spontaneous localisation modifies the path integral formulation of density matrix evolution in quantum mechanics. We provide two new pedagogical derivations of the GRW propagator. We then show how the von Neumann equation and the Liouville equation for the density matrix arise in the quantum and classical limit, respectively, from the GRW path integral.


Sign in / Sign up

Export Citation Format

Share Document