isothermal model
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 64)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 21 (4) ◽  
pp. 274-288
Author(s):  
Hailaa Jabbar Kareem ◽  
Ali A. F. Al-Hamadani ◽  
Ali Noaman Ibrahim

The Stirling engine is an external heat engine, which is considered as the best option for extracting work from concentrated solar power applications. The most prominent characteristics of the engine are low noise, vibration, and emissions besides reflexivity of usage with any kind of heat source such as solar, biomass, industrial heat, etc. In the present paper, the STE-1008 gamma-type Stirling engine had been analyzed by using an isothermal model to demonstrate the failure of the model in analyzing the STE-1008 considering it firstly as an engine and secondly as a cryocooler. The energy equation had been used to demonstrate the disability of the isothermal model in achieving a successful thermal analysis for engine performance. In addition, a MATLAB code had been developed to check the credibility of the isothermal model in the estimation of the engine thermal parameters. The findings of the isothermal analysis revealed that the heat exchangers are unnecessary. But, in reality; all the necessary heat transfer occur within the heat exchangers rather than in the working space boundaries. Therefore, that is invalid conclusion. However, Schmidt's theory is capable of capturing the essential engine features superbly. In particular, it is capable of capturing the fundamental interplay between the mechanically restricted movement of the engine components as well as the thermodynamic cycle which is obtained from this theory.


2021 ◽  
Author(s):  
Jiangyuan Wang ◽  
Qiu Yu ◽  
Yi Zheng ◽  
Jing Li ◽  
Binquan Jiao ◽  
...  

Abstract Heavy metal pollutant Cr(Ⅵ) in the environment will pose a severe threat to animal and human health. In this work, Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy were prepared to enhance adsorption of Cr(Ⅵ) by doping Fe3O4 nanoparticles and amino radicals into the original PPy structure. Their characteristics were investigated by FTIR, SEM, EDS, BET analysis, and batch adsorption experiments. And they were used as permeable reaction barriers (PRB) to combine with electrokinetic remediation (EKR) to remediate Cr-contaminated soil. Adsorption experiment results showed that the maximum adsorption capacities of PPy, Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy for Cr(Ⅵ) were 60.43 mg/g, 67.12 mg/g, 159.86 mg/g, and 141.50 mg/g, respectively. All of them followed the kinetic pseudo-second-order model and the Langmuir isothermal model with a monolayer adsorption behavior. In EKR/PRB system, the presence of Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy obtained the higher Cr(Ⅵ) removal efficiency near the anode than that of the PPy, increasing by 74.60%, 26.04%, 68.64%, respectively. A strong electrostatic attraction between anion contaminants and protonated modified PPy and a reduction from Cr(Ⅵ) to Cr(Ⅲ) appeared in the EKR remediation process under acid conditions. This study opened up a prospect for applying modified PPy composites to treat heavy metal contaminated soil.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2195
Author(s):  
Yi Qian ◽  
Haoyan Fu ◽  
Long Li ◽  
Wenyuan Su ◽  
Jiayin Li ◽  
...  

Due to the widespread use of antibiotics in medical treatment, animal husbandry and aquaculture, a large number of antibiotics are discharged into the environment as metabolites or in their original state, causing pollution to water bodies, which is a serious issue. In this study, a novel nanocomposite adsorbent MIL-53/D201 was successfully prepared by hydrothermal synthesis. This approach overcomes the disadvantage of easy dissociation of MOF material in the water phase and realizes the efficient removal of antibiotic azlocillin sodium in water. The crystal morphology and basic structure of the composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy scattering spectroscopy (EDS), and specific surface area and porosity analyzer (BET). The results showed that MIL-53 was successfully synthesized in situ in D201. The results of adsorption experiments show that the maximum saturated adsorption capacity of the composite is 122.3 mg/g when the dosage of the composite is 1.0 g/L. Compared with pure MIL-53 material, the composite material exhibits greater stability and efficient adsorption performance for target pollutants at different pH values. The adsorption process accords with the quasi-second-order kinetic adsorption model and Langmuir adsorption isothermal model. After five cycles of adsorption and desorption, the removal rate of MIL-53/D201 to azlocillin sodium was still above 87%.


2021 ◽  
Author(s):  
Beigang Li ◽  
Ting Lv ◽  
Yanlong Shen

Abstract Magnetic sodium alginate(SA)-based biogel composite Fe-SA-Y@Fe3O4 macroparticles were polymerized by co-crosslinking of yttrium(III) and iron(III) ions according to the optimized preparation conditions and characterized by various modern analytical techniques. The results show that the biogel beads have unique cauliflower-shaped surface and sensitive magnetic response. Fe-SA-Y@Fe3O4 composite was used for the removal of Direct Red 13 (DR 13) and Direct Black 19 (DB 19) dyes from water. The adsorption capacities and removal efficiency can reach 2487 mg/g and 99.5% for DR-13 and 2992 mg/g and 99.7% for DB-19 respectively within the equilibrium time of 60 min at 298K and pH 2.0, and decrease slightly with pH up to 10.0. The kinetic and equilibrium adsorption data followed the Pseudo-second-order rate model and Langmuir isothermal model well, respectively. Electrostatic adsorption, various H-bonding and complexation were largely involved in dye adsorption processes with spontaneous and exothermic character by the biogel beads, which were explained by thermodynamic studies, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), respectively. Fe-SA-Y@Fe3O4 gel composite with ultrahigh adsorption capacity and fast magnetic separation property will be a promising eco-friendly bio-based adsorbent for the superefficient purification of practical azo-dye effluents.


Author(s):  
Sailu Xu ◽  
Yuxin Du ◽  
Meiqi Hui ◽  
Zichen Wang ◽  
Junfeng Zhao ◽  
...  

The porous carbon/Ni nanoparticle composite was prepared by a freeze-drying method using NaCl as the template. It was applied in the effect of the concentration, adsorption time, and temperature of adsorption on the adsorption behavior. The kinetic model and the adsorption isothermic fitting results show that the adsorption behavior fits with the pseudo-secondary dynamics and the Langmuir isothermal model, indicating that the adsorption process is monolayer adsorption. Thermodynamic results indicate that the adsorption process is spontaneous physicochemical adsorption. The fitting showed that the porous carbon/Ni nanoparticle composites reach 217.17 mg·g-1, at 313 K indicates good adsorption for Congo red.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5688
Author(s):  
Vanderlane Cavalcanti Silva ◽  
Maria Eduarda Barbosa Araújo ◽  
Alisson Mendes Rodrigues ◽  
Maria do Bom Conselho Vitorino ◽  
Juliana Melo Cartaxo ◽  
...  

The effect of heat treatment on the adsorptive capacity of a Brazilian palygorskite to remove the dyes crystal violet (CV) and congo red (CR) was investigated. The natural palygorskite was calcined at different temperatures (300, 500 and 700 °C) for 4 h. Changes in the palygorskite structure were evaluated using X-ray diffraction, X-ray fluorescence, thermogravimetric and differential thermal analysis, N2 adsorption/desorption and Fourier transform infrared spectroscopy. The adsorption efficiency of CV and CR was investigated through the effect of initial concentration, contact time, temperature, pH and dosage of adsorbent. The calcination increased the adsorption capacity of palygorskite, and the greatest adsorption capacity of CV and CR dyes occurred in the sample calcined at 700 °C (Pal-700T). The natural and calcined samples at 300 and 500 °C followed the Freundlich isothermal model, while the Pal-700T followed the Langmuir isothermal model. Adsorption kinetics results were well described by the Elovich model. Pal-700T showed better adsorption performance at basic pH, with removal greater than 98%, for both dyes. Pal-700T proved to be a great candidate for removing cationic and anionic dyes present in water.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
You-qun Wang ◽  
Huan Wang ◽  
Yue Feng ◽  
Zhi-bin Zhang ◽  
Xiao-hong Cao ◽  
...  

Abstract In this work, diethylenetriamine pentamethylenephosphonic acid (DTPMP) was ultilized into preparing of Zr(IV) organophosphates hybrids (Zr-DTPMP-x, x was the molar ratio of Zr(IV)/DTPMP in the synthetic process, x = 0.5, 1, 2, and 3) using a hydrothermal method. The physical and chemical properties of Zr-DTPMP-x were characterized by SEM&EDS, FT-IR, XRD, Zeta potential, XPS, TGA and contact angle analysis. Moreover, the adsorptive performances of Zr-DTPMP-x for U(VI) were investigated. The adsorption results showed that the optimum molar ratio of Zr(IV) to phosphine, pH, equilibrium time, and dosage was 0.5, 4.0, 180 min, and 10 mg, respectively. Besides, the adsorption of U(VI) was in accordance with the pseudo-second-order kinetic model and Sips isothermal model. Moreover, the adsorption capacity determined by Sips isothermal model was 181.34 mg g−1 for Zr-DTPMP-0.5. Furthermore, the adsorptive selectivity of Zr-DTPMP-0.5 for U(VI) was superior than the others. Zr-DTPMP-0.5 may be a powerful candidate for diminishing the contamination of U(VI).


2021 ◽  
Author(s):  
Reza Davarnejad ◽  
Kourosh Nikandam

Abstract ZnO nanoparticles (NPs) were easily synthesized using zinc nitrate through centaurea cyanus extract (as a reducing agent) at ambient conditions. XRD results demonstrated that ZnO NPs have a high-crystalline hexagonal structure with an average size of 48 nm in diameter. FT-IR spectral analysis indicated an active contribution of centaurea cyanus-derived biomolecules in zinc ions bioreduction. According to SEM analysis, ZnO NPs were properly dispersed and had a hexagonal shape. Batch experiments were performed to investigate the impact of several process parameters such as initial pH of solution, adsorption dosage, Pd2+ ions initial concentration and contact time on the Pd2+ ions adsorption from the solution. The Freundlich isothermal model could excellently legitimize a multilayer adsorption. Furthermore, the adsorption process followed a pseudo-second-order reaction kinetic. The maximum adsorption (99.24%) was experimentally found at pH of 5.5, adsorption dosage of 1.63 g.L-1, Pd2+ ions initial concentration of 77.5 mg.L-1 and contact time of 91.25 min.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Pham Dinh Du ◽  
Huynh Thanh Danh

Diatomite was slightly modified with a sodium hydroxide solution. The resulting material was characterized by using energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption isotherms. The so-treated diatomite has a high specific surface area (77.8 m2/g) and a high concentration of isolated silanol groups on the surface, and therefore, its adsorption capacity increases drastically in both the single and binary adsorption systems for rhodamine B and methylene blue. The binary system is more effective than the single system, with methylene blue being adsorbed more than rhodamine B. The adsorption process is spontaneous and fits well with the Langmuir isothermal model, and it depends on pH significantly.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2494
Author(s):  
Somayeh Toghyani ◽  
Seyed Ali Atyabi ◽  
Xin Gao

One of the marketing challenges of unmanned aerial vehicles (UAVs) for various applications is enhancing flight durability. Due to the superior characteristics of proton exchange membrane fuel cells (PEMFCs), they have the potential to reach a longer flight time and higher payload. In this regard, a numerical assessment of a UAV air-cooled PEMFC is carried out using a three-dimensional (3-D), multiphase, and non-isothermal model on three flow fields, i.e., unblocked bean-shaped, blocked bean-shaped, and parallel. Then, the results of single-cell modeling are generalized to the PEMFC stack to provide the power of 2.5 kW for a UAV. The obtained results indicate that the strategy of rising air stoichiometry for cooling performs well in the unblocked bean-shaped design, and the maximum temperature along the channel length reaches 331.5 K at the air stoichiometric of 30. Further, it is found that the best performance of a 2.5 kW PEMFC stack is attained by the bean-shaped design without blockage, of which its volume and mass power density are 1.1 kW L−1 and 0.2 kW kg−1, respectively. It is 9.4% lighter and 6.9% more compact than the parallel flow field. Therefore, the unblocked bean-shaped design can be a good option for aerial applications.


Sign in / Sign up

Export Citation Format

Share Document