helical magnetic field
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 1)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 26
Author(s):  
Sumanta Chakraborty ◽  
Supratik Pal ◽  
Soumitra SenGupta

Primordial magnetic field generated in the inflationary era can act as a viable source for the present day intergalactic magnetic field of sufficient strength. We present a fundamental origin for such a primordial generation of the magnetic field, namely through anomaly cancellation of U(1) gauge field in quantum electrodynamics in the context of hilltop inflation. We have analysed at length the power spectrum of the magnetic field, thus generated, which turns out to be helical in nature. We have also found that magnetic power spectrum has significant scale-dependence giving rise to a non-trivial magnetic spectral index, a key feature of this model. Interestingly, there exists a large parameter space, where magnetic field of significant strength can be produced.


2021 ◽  
Vol 923 (1) ◽  
pp. L5
Author(s):  
Alice Pasetto ◽  
Carlos Carrasco-González ◽  
José L. Gómez ◽  
José-Maria Martí ◽  
Manel Perucho ◽  
...  

Abstract We present unprecedented high-fidelity radio images of the M87 jet. We analyzed Jansky Very Large Array broadband full-polarization radio data from 4 to 18 GHz. The observations were taken with the most extended configuration (A configuration), which allows the study of the emission of the jet up to kiloparsec scales with a linear resolution of ∼10 pc. The high sensitivity and resolution of our data allow us to resolve the jet width. We confirm a double-helix morphology of the jet material between ∼300 pc and ∼1 kpc. We found a gradient of the polarization degree with a minimum at the projected axis and maxima at the jet edges and a gradient in the Faraday depth with opposite signs at the jet edges. We also found that the behavior of the polarization properties along the wide range of frequencies is consistent with internal Faraday depolarization. All of these characteristics strongly support the presence of a helical magnetic field in the M87 jet up to 1 kpc from the central black hole, although the jet is most likely particle-dominated at these large scales. Therefore, we propose a plausible scenario in which the helical configuration of the magnetic field has been maintained to large scales thanks to the presence of Kelvin–Helmholtz instabilities.


Author(s):  
D. Martínez ◽  
J. A. Reyes ◽  
G. Reyes ◽  
C. G. Avendaño

In this paper, we consider a clockwise rotating magnetic field around the [Formula: see text]-axis and charge carriers which impinge normally to the [Formula: see text] plane. We obtained analytically the spectrum of the momentum operator [Formula: see text] and found the existence of a band structure from which the movement of these charge carries is filtered according to the spatial period of the magnetic field or its intensity. Also we exhibit the existence of three band gaps (one total or primary and two partials) whose width depends on the system parameters.


2021 ◽  
pp. 36-40
Author(s):  
N.I. Grishanov ◽  
N.A. Azarenkov

Influence of a longitudinal stationary current on the absorption and the radial structure of fast waves in a cylindrical current-carrying plasma is discussed. To evaluate the dispersion equation for fast waves, there was used the dielectric tensor taking into account the radial current structure and geometry of the confining helical magnetic field by the plasma safety factor. It is shown that the damping rate of fast waves in a non-equilibrium current-carrying plasma differ from those for an equilibrium plasma column in a homogeneous magnetic field nearby the cutoffs and resonances due to the rotational transformation (including shear-effects) of the helical magnetic field lines.


ACS Nano ◽  
2020 ◽  
Vol 14 (6) ◽  
pp. 7152-7160
Author(s):  
Ki-Jae Jeong ◽  
Dong Kyu Lee ◽  
Van Tan Tran ◽  
Caifeng Wang ◽  
Jiawei Lv ◽  
...  

Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Margo Aller ◽  
Philip Hughes ◽  
Hugh Aller ◽  
Talvikki Hovatta

We use multi-frequency linear polarization observations from the University of Michigan blazar program (UMRAO), in combination with radiative transfer simulations of emission from a relativistic jet, to investigate the time-dependent flow conditions, including magnetic field geometry, in an example blazar OT 081. We adopt a scenario incorporating relativistic shocks during flaring, and both ordered axial and helical magnetic field components and magnetic turbulence in the underlying flow; these constituents are consistent with the observed periods of ordered behavior in the polarization intermixed with stochastic variations. The simulations are able to reproduce the global features of the observed light curves, including amplitude and spectral evolution of the linear polarization, during four time periods spanning 25 years. From the simulations, we identify the signature of a weak-to-strong helical magnetic field on the polarization, but conclude that a dominant helical magnetic field is not consistent with the UMRAO polarization data. The modeling identifies time-dependent changes in the ratio of the ordered-to-turbulent magnetic field, and changes in the flow direction and Lorentz factor. These suggest the presence of jet-like structures within a broad envelope seen at different orientations.


2020 ◽  
Vol 493 (2) ◽  
pp. 2652-2658
Author(s):  
Kenichi Nishikawa ◽  
Yosuke Mizuno ◽  
Jose L Gómez ◽  
Ioana Duţan ◽  
Jacek Niemiec ◽  
...  

ABSTRACT One of the key questions in the study of relativistic jets is how magnetic reconnection occurs and whether it can effectively accelerate electrons in the jet. We performed 3D particle-in-cell (PIC) simulations of a relativistic electron–proton jet of relatively large radius that carries a helical magnetic field. We focused our investigation on the interaction between the jet and the ambient plasma and explore how the helical magnetic field affects the excitation of kinetic instabilities such as the Weibel instability (WI), the kinetic Kelvin–Helmholtz instability (kKHI), and the mushroom instability (MI). In our simulations these kinetic instabilities are indeed excited, and particles are accelerated. At the linear stage we observe recollimation shocks near the centre of the jet. As the electron–proton jet evolves into the deep non-linear stage, the helical magnetic field becomes untangled due to reconnection-like phenomena, and electrons are repeatedly accelerated as they encounter magnetic-reconnection events in the turbulent magnetic field.


2020 ◽  
Vol 493 (2) ◽  
pp. 1736-1752
Author(s):  
Adam Rogers ◽  
Abdul Mohamed ◽  
Bailey Preston ◽  
Jason D Fiege ◽  
Xinzhong Er

ABSTRACT Spherical plasma lens models are known to suffer from a severe overpressure problem, with some observations requiring lenses with central pressures up to millions of times in excess of the ambient interstellar medium. There are two ways that lens models can solve the overpressure problem: a confinement mechanism exists to counter the internal pressure of the lens, or the lens has a unique geometry, such that the projected column-density appears large to an observer. This occurs with highly asymmetric models, such as edge-on sheets or filaments, with potentially low volume–density. In the first part of this work we investigate the ability of non-magnetized plasma filaments to mimic the magnification of sources seen behind spherical lenses and we extend a theorem from gravitational lens studies regarding this model degeneracy. We find that for plasma lenses, the theorem produces unphysical charge density distributions. In the second part of the work, we consider the plasma lens overpressure problem. Using magnetohydrodynamics, we develop a non self-gravitating model filament confined by a helical magnetic field. We use toy models in the force-free limit to illustrate novel lensing properties. Generally, magnetized filaments may act as lenses in any orientation with respect to the observer, with the most high-density events produced from filaments with axes near the line of sight. We focus on filaments that are perpendicular to the line of sight that show the toroidal magnetic field component may be observed via the lens rotation measure.


Sign in / Sign up

Export Citation Format

Share Document