The many-worlds and relative states interpretations of quantum mechanics, and the quantum Zeno paradox

1987 ◽  
Vol 20 (11) ◽  
pp. 3339-3345 ◽  
Author(s):  
D Home ◽  
M A B Whitaker
Author(s):  
Joaquin Trujillo

The articles provides a phenomenological reading of the Many-Worlds Interpretation (MWI) of quantum mechanics and its answer to the measurement problem, or the question of “why only one of a wave function’s probable values is observed when the system is measured.” Transcendental-phenomenological and hermeneutic-phenomenological approaches are employed. The project comprises four parts. Parts one and two review MWI and the standard (Copenhagen) interpretation of quantum mechanics. Part three reviews the phenomenologies. Part four deconstructs the hermeneutics of MWI. It agrees with the confidence the theory derives from its (1) unforgiving appropriation of the Schrödinger equation and (2) association of branching universes with the evolution of the wave function insofar as that understanding comes from the formalism itself. Part four also reveals the hermeneutical shortcomings of the standard interpretation.


2020 ◽  
Author(s):  
Vasil Penchev

The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”


2013 ◽  
Vol 22 (13) ◽  
pp. 1350079 ◽  
Author(s):  
BARUN MAJUMDER

Isotropic quantum cosmological perfect fluid model is studied in the formalism of Rainbow gravity. It is found that the only surviving matter degree of freedom played the role of cosmic time. With the suitable choice of the Rainbow functions it is possible to find the wave packet naturally from the superposition of the wave functions of the Schrödinger–Wheeler–deWitt equation. The many-worlds interpretation of quantum mechanics is applied to investigate the behavior of the scale factor and the behavior is found to depend on the operator ordering. It is shown that the model in the Rainbow framework may avoid singularity yielding a bouncing nonsingular universe.


Author(s):  
Samuel Kuypers ◽  
David Deutsch

Everett's relative-state construction in quantum theory has never been satisfactorily expressed in the Heisenberg picture. What one might have expected to be a straightforward process was impeded by conceptual and technical problems that we solve here. The result is a construction which, unlike Everett's one in the Schrödinger picture, makes manifest the locality of Everettian multiplicity, its inherently approximative nature and its origin in certain kinds of entanglement and locally inaccessible information. (By Everettian , we are referring not only to Everett's own work, but also to versions of quantum theory that elaborate and refine his. The notion of relative states first appeared in Everett (Everett 1973 In The many worlds interpretation of quantum mechanics (eds BS DeWitt, N Graham)). We are proposing a formalism for relative states that is more detailed and more illuminating than Everett's.) Our construction also allows us to give a more precise definition of an Everett ‘universe’, under which it is fully quantum, not quasi-classical, and we compare the Everettian decomposition of a quantum state with the foliation of a space–time.


Sign in / Sign up

Export Citation Format

Share Document