scholarly journals If quantum mechanics is the solution, what should the problem be?

Author(s):  
Vasil Penchev

The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”

2020 ◽  
Author(s):  
Vasil Penchev

The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”


2011 ◽  
Vol 3 (1) ◽  
pp. 7-20 ◽  
Author(s):  
Ewa Drabik

Classical and Quantum Physics in Selected Economic ModelsA growing number of economic phenomena are nowadays described with methods known in physics. The most frequently applied physical theories by economists are: (1) the universal gravitation law and (2) the first and second law of thermodynamics. Physical principles can also be applied to the theory of financial markets. Financial markets are composed of individual participants who may be seen to interact as particles in a physical system. This approach proposes a financial market model known as a minority game model in which securities and money are allocated on the basis of price fluctuations, and where selling is best option when the vast majority of investors tend to purchase goods or services, and vice versa. The players who end up being on the minority side win.The above applications of physical methods in economics are deeply rooted in classical physics. However, this paper aims to introduce the basic concepts of quantum mechanics to the process of economic phenomena modelling. Quantum mechanics is a theory describing the behaviour of microscopic objects and is grounded on the principle of wave-particle duality. It is assumed that quantum-scale objects at the same time exhibit both wave-like and particle-like properties. The key role in quantum mechanics is played by: (1) the Schrödinger equation describing the probability amplitude for the particle to be found in a given position and at a given time, and as (2) the Heisenberg uncertainty principle stating that certain pairs of physical properties cannot be economic applications of the Schrödinger equation as well as the Heisenberg uncertainty principle. We also try to describe the English auction by means the quantum mechanics methods.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality, derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics. Quantum mechanics being just a generalization theory of the complex square root of classical statistical mechanics is both new physics and revolutionary discovery, which are affecting people’s deep philosophical thinking for modern physics development, solve all the crisises of quantum mechanics, quantum information and so on, and make quantum mechanics have scientific solid bases being checked and both no basic axiom presumption and no all the quantum strange incomprehensible properties, because classical statistical mechanics and the complex square root of classical statistical mechanics have the scientific solid bases being checked. In addition, this paper discovers the reason no taking the time derivative of space coordinates in Schrȍdinger equation. Therefore, this paper gives solution to the crisis of the first quantization origin, and mainly deduces quantum physics no all the quantum current strange incomprehensible properties.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality (i.e., complementary principle), derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics, which will make people renew thinking modern physics development. In addition, this paper discovers the reason that Schrȍdinger equation doesn’t takes the time derivative of space coordinates. Therefore, this paper gives solution to the Crisis of the first quantization origin.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


2020 ◽  
Author(s):  
Daniel A. Fleisch

Quantum mechanics is a hugely important topic in science and engineering, but many students struggle to understand the abstract mathematical techniques used to solve the Schrödinger equation and to analyze the resulting wave functions. Retaining the popular approach used in Fleisch's other Student's Guides, this friendly resource uses plain language to provide detailed explanations of the fundamental concepts and mathematical techniques underlying the Schrödinger equation in quantum mechanics. It addresses in a clear and intuitive way the problems students find most troublesome. Each chapter includes several homework problems with fully worked solutions. A companion website hosts additional resources, including a helpful glossary, Matlab code for creating key simulations, revision quizzes and a series of videos in which the author explains the most important concepts from each section of the book.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


Sign in / Sign up

Export Citation Format

Share Document