heisenberg picture
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Jafar Jahanpanah ◽  
A Vahedi ◽  
H . Khosrojerdi

The relativistic behavior of Hydrogen-like atoms (HLAs) is investigated in Heisenberg picture for the first time. The relativistic vibrational Hamiltonian (RVH) is first defined as a power series of harmonic oscillator Hamiltonian by using the relativistic energy eigenvalue . By applying the first-order RVH (proportional to ) to Heisenberg equation, a pair of coupled equations is turned out for the motion of electron position and its relativistic linear momentum. A simple comparison of the first-order relativistic and nonrelativistic equations reveals this reality that the natural (fundamental) frequency of electron oscillation (like entropy) is slowly raised by increasing the atomic number. The second-order RVH (proportional to ) have then been implemented to determine an exact expression for the electron relativistic frequency in the different atomic energy levels. In general, the physical role of RVH is fundamental because it not only specifies the temporal relativistic variations of position, velocity, and linear momentum of oscillating electron, but also identifies the corresponding relativistic potential, kinetic, and mechanical energies. The results will finally be testified by demonstrating the energy conservation.


Author(s):  
David Montenegro ◽  
B. M. Pimentel

We examine the generalized quantum electrodynamics as a natural extension of the Maxwell electrodynamics to cure the one-loop divergence. We establish a precise scenario to discuss the underlying features between photon and fermion where the perturbative Maxwell electrodynamics fails. Our quantum model combines stability, unitarity, and gauge invariance as the central properties. To interpret the quantum fluctuations without suffering from the physical conflicts proved by Haag’s theorem, we construct the covariant quantization in the Heisenberg picture instead of the Interaction one. Furthermore, we discuss the absence of anomalous magnetic moment and mass-shell singularity.


Author(s):  
Mark A. Rubin

The fact that certain “extraordinary” probabilistic phenomena — in particular, macroscopic violations of the second law of thermodynamics — have never been observed to occur can be accounted for by taking hard preclusion as a basic physical law, i.e. precluding from existence events corresponding to very small but nonzero values of quantum-mechanical weight. This approach is not consistent with the usual ontology of the Everett interpretation, in which outcomes correspond to branches of the state vector, but can be successfully implemented using a Heisenberg-picture-based ontology in which outcomes are encoded in transformations of operators. Hard preclusion can provide an explanation for biological evolution, which can in turn explain our subjective experiences of, and reactions to, “ordinary” probabilistic phenomena, and the compatibility of those experiences and reactions with what we conventionally take to be objective probabilities arising from physical laws.


2021 ◽  
Vol 3 (2) ◽  
pp. 272-285
Author(s):  
Charles Alexandre Bédard

It has been more than 20 years since Deutsch and Hayden proved the locality of quantum theory, using the Heisenberg picture of quantum computational networks. Of course, locality holds even in the face of entanglement and Bell’s theorem. Today, most researchers in quantum foundations are still convinced not only that a local description of quantum systems has not yet been provided, but that it cannot exist. The main goal of this paper is to address this misconception by re-explaining the descriptor formalism in a hopefully accessible and self-contained way. It is a step-by-step guide to how and why descriptors work. Finally, superdense coding is revisited in the light of descriptors.


Author(s):  
Samuel Kuypers ◽  
David Deutsch

Everett's relative-state construction in quantum theory has never been satisfactorily expressed in the Heisenberg picture. What one might have expected to be a straightforward process was impeded by conceptual and technical problems that we solve here. The result is a construction which, unlike Everett's one in the Schrödinger picture, makes manifest the locality of Everettian multiplicity, its inherently approximative nature and its origin in certain kinds of entanglement and locally inaccessible information. (By Everettian , we are referring not only to Everett's own work, but also to versions of quantum theory that elaborate and refine his. The notion of relative states first appeared in Everett (Everett 1973 In The many worlds interpretation of quantum mechanics (eds BS DeWitt, N Graham)). We are proposing a formalism for relative states that is more detailed and more illuminating than Everett's.) Our construction also allows us to give a more precise definition of an Everett ‘universe’, under which it is fully quantum, not quasi-classical, and we compare the Everettian decomposition of a quantum state with the foliation of a space–time.


2020 ◽  
Vol 8 ◽  
Author(s):  
Alberto Casado ◽  
Santiago Guerra ◽  
José Plácido

In this article, an undulatory description of the Innsbruck teleportation experiment is given, grounded in the role of the zero-point field (ZPF). The Wigner approach in the Heisenberg picture is used, so that the quadruple correlations of the field, along with the subtraction of the zero-point intensity at the detectors, are shown to be the essential ingredients that replace entanglement and collapse. This study contrasts sharply with the standard particle-like analysis and offers the possibility of understanding the hidden mechanism of teleportation, relying on vacuum amplitudes as hidden variables.


2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Saumya Biswas ◽  
S. J. van Enk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document