Mobility edge in one-dimensional tight-binding models

1989 ◽  
Vol 22 (14) ◽  
pp. L681-L686 ◽  
Author(s):  
A Crisanti
1997 ◽  
Vol 11 (15) ◽  
pp. 1845-1863 ◽  
Author(s):  
A. Cohen ◽  
R. Berkovits ◽  
A. Heinrich

We present numerical results for the zero temperature persistent currents carried by interacting spinless electrons in disordered one-dimensional continuous rings. The disorder potential is described by a collection of δ-functions at random locations and strengths. The calculations are performed by a self-consistent Hartree–Fock (HF) approximation. Because the HF approximation retains the concept of single-electron levels, we compare the statistics of energy levels of noninteracting electrons with those of interacting electrons as well as of the level persistent currents. We find that the e–e interactions alter the levels and samples persistent currents and introduces a preffered diamagnetic current direction. In contrast to the analogous calculations that recently appeared in the literature for interacting spinless electrons in the presence of moderate disorder in tight-binding models we find no suppression of the persistent currents due to the e–e interactions.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 597
Author(s):  
Souvik Roy ◽  
Santanu K. Maiti ◽  
Laura M. Pérez ◽  
Judith Helena Ojeda Silva ◽  
David Laroze

We explore the localization properties of a double-stranded ladder within a tight-binding framework where the site energies of different lattice sites are distributed in the cosine form following the Aubry–André–Harper (AAH) model. An imaginary site energy, which can be positive or negative, referred to as physical gain or loss, is included in each of these lattice sites which makes the system a non-Hermitian (NH) one. Depending on the distribution of imaginary site energies, we obtain balanced and imbalanced NH ladders of different types, and for all these cases, we critically investigate localization phenomena. Each ladder can be decoupled into two effective one-dimensional (1D) chains which exhibit two distinct critical points of transition from metallic to insulating (MI) phase. Because of the existence of two distinct critical points, a mixed-phase (MP) zone emerges which yields the possibility of getting a mobility edge (ME). The conducting behaviors of different energy eigenstates are investigated in terms of inverse participation ratio (IPR). The critical points and thus the MP window can be selectively controlled by tuning the strength of the imaginary site energies which brings a new insight into the localization aspect. A brief discussion on phase transition considering a multi-stranded ladder was also given as a general case, to make the present communication a self-contained one. Our theoretical analysis can be utilized to investigate the localization phenomena in different kinds of simple and complex quasicrystals in the presence of physical gain and/or loss.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Ali Moghaddam ◽  
Dmitry Chernyavsky ◽  
Corentin Morice ◽  
Jasper van Wezel ◽  
Jeroen van den Brink

We investigate the spectral properties of one-dimensional lattices with position-dependent hopping amplitudes and on-site potentials that are smooth bounded functions of the position. We find an exact integral form for the density of states (DOS) in the limit of an infinite number of sites, which we derive using a mixed Bloch-Wannier basis consisting of piecewise Wannier functions. Next, we provide an exact solution for the inverse problem of constructing the position-dependence of hopping in a lattice model yielding a given DOS. We confirm analytic results by comparing them to numerics obtained by exact diagonalization for various incarnations of position-dependent hoppings and on-site potentials. Finally, we generalize the DOS integral form to multi-orbital tight-binding models with longer-range hoppings and in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document