Finite size effects in conformal field theories and non-local operators in one-dimensional quantum systems

1990 ◽  
Vol 23 (10) ◽  
pp. L493-L496 ◽  
Author(s):  
A D Mironov ◽  
A V Zabrodin
2000 ◽  
Author(s):  
Roberto Tateo ◽  
Patrick Dorey ◽  
M. Pillin ◽  
A. Pocklington ◽  
I. Runkel ◽  
...  

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
P. A. Kalozoumis ◽  
G. Theocharis ◽  
V. Achilleos ◽  
S. Félix ◽  
O. Richoux ◽  
...  

2011 ◽  
Vol 83 (5) ◽  
Author(s):  
A. Gendiar ◽  
M. Daniška ◽  
Y. Lee ◽  
T. Nishino

2006 ◽  
Vol 21 (28) ◽  
pp. 2099-2115 ◽  
Author(s):  
VALENTINA RIVA

We review some recent results obtained in the analysis of two-dimensional quantum field theories by means of semiclassical techniques, which generalize methods introduced during the '70s by Dashen, Hasllacher and Neveu and by Goldstone and Jackiw. The approach is best suited to deal with quantum field theories characterized by a nonlinear interaction potential with different degenerate minima, that generates kink excitations of large mass in the small coupling regime. Under these circumstances, although the results obtained are based on a small coupling assumption, they are nevertheless nonperturbative, since the kink backgrounds around which the semiclassical expansion is performed are nonperturbative too. We will discuss the efficacy of the semiclassical method as a tool to control analytically spectrum and finite-size effects in these theories.


2004 ◽  
Vol 700 (1-3) ◽  
pp. 407-435 ◽  
Author(s):  
André LeClair ◽  
José María Román ◽  
Germán Sierra

2016 ◽  
Vol 30 (22) ◽  
pp. 1650307 ◽  
Author(s):  
Elías Castellanos

We analyze the corrections caused by finite size effects upon the ground state properties of a homogeneous one-dimensional (1D) Bose–Einstein condensate. We assume from the very beginning that the Bogoliubov’s formalism is valid and consequently, we show that in order to obtain a well-defined ground state properties, finite size effects of the system must be taken into account. Indeed, the formalism described in the present paper allows to recover the usual properties related to the ground state of a homogeneous 1D Bose–Einstein condensate but corrected by finite size effects of the system. Finally, this scenario allows us to analyze the sensitivity of the system when the Bogoliubov’s regime is valid and when finite size effects are present. These facts open the possibility to apply these ideas to more realistic scenarios, e.g. low-dimensional trapped Bose–Einstein condensates.


Sign in / Sign up

Export Citation Format

Share Document