interface states
Recently Published Documents


TOTAL DOCUMENTS

1572
(FIVE YEARS 146)

H-INDEX

73
(FIVE YEARS 5)

Author(s):  
Rijo Baby ◽  
Anirudh Venugopalrao ◽  
Hareesh Chandrasekar ◽  
Srinivasan Raghavan ◽  
Muralidharan Rangrajan ◽  
...  

Abstract In this work, we show that a bilayer SiNx passivation scheme which includes a high-temperature annealed SiNx as gate dielectric, significantly improves both ON and OFF state performance of AlGaN/GaN MISHEMTs. From devices with different SiNx passivation schemes, surface and bulk leakage paths were determined. Temperature-dependent MESA leakage studies showed that the surface conduction could be explained using a 2-D variable range hopping mechanism along with the mid-gap interface states at the GaN(cap)/ SiNx interface generated due to the Ga-Ga metal like bonding states. It was found that the high temperature annealed SiNx gate dielectric exhibited the lowest interface state density and a two-step C-V indicative of a superior quality SiNx/GaN interface as confirmed from conductance and capacitance measurements. High-temperature annealing helps in the formation of Ga-N bonding states, thus reducing the shallow metal-like interface states. MISHEMT measurements showed a significant reduction in gate leakage and a 4-orders of magnitude improvement in the ON/OFF ratio while increasing the saturation drain current (IDS) by a factor of 2. Besides, MISHEMTs with 2-step SiNx passivation exhibited a relatively flat transconductance profile, indicative of lower interface states density. The dynamic Ron with gate and drain stressing measurements also showed about 3x improvements in devices with bilayer SiNx passivation.


2021 ◽  
Vol 12 (1) ◽  
pp. 167
Author(s):  
Hongbo Zhang ◽  
Shaobo Zhang ◽  
Jiang Liu ◽  
Bilong Liu

Weyl physics in acoustic and elastic systems has drawn extensive attention. In this paper, Weyl points of shear horizontal guided waves are realized by one-dimensional phononic crystal plates, in which one physical dimension plus two geometrical parameters constitute a synthetic three-dimensional space. Based on the finite element method, we have not only observed the synthetic Weyl points but also explored the Weyl interface states and the reflection phase vortices, which have further proved the topological phase interface states. As the first realization of three-dimensional topological phases through one-dimensional phononic crystal plates in the synthetic dimension, this research demonstrates the great potential of applicable one-dimensional plate structural systems in detecting higher-dimensional topological phenomena.


Author(s):  
Min-Soo Kang ◽  
Kasidit Toprasertpong ◽  
Mitsuru TAKENAKA ◽  
Hiroshi Oka ◽  
Takahiro MORI ◽  
...  

Abstract We experimentally characterize SS of Si nMOSFETs with a substrate boron concentration of 2 × 1016 cm-3 as a function of IDS and temperatures from 4 to 300 K to verify the validity of the physical model of SS. The minimum SS are obtained around 4 mV/dec. at 4 K. The physical model including band tail states and interface states is employed to represent the experimental SS from 4 to 300 K. The impact of each parameter included in the physical model on SS behavior is examined by changing the value of the parameters in simulation. It is found that the proposed physical model can quantitatively represent experimental SS in a wide range of IDS and temperature under a given set of the parameters regarding the band tail states and the interface states. This finding indicates the validity of the present physical model and the correctness of the physical picture.


Author(s):  
Nargis Bano ◽  
Ijaz Hussain ◽  
Eman Al-Ghamdi ◽  
M. Saeed Ahmad

Abstract Electrical trap states in the AlGaN-based high-electron-mobility transistor (HEMT) structures limit the performances of devices. In this study, we present a comprehensive study of the electrical trap states in AlGaN/GaN HEMT structures and examine their influence on the device performance. We performed capacitance–frequency and conductance–frequency measurements to determine the time constant and the density of the interface states. The density of the interface states was calculated to be 2 × 1010 cm−2 eV−1, and the time constant of the interface states was 1 μs. Deep-level transient spectroscopy showed the presence of one electron trap E1 (negative peak) and three hole-like traps P1, P2, and P3 (positive peaks). The thermal activation energies for E1, P1, P2, and P3 traps were calculated to be 1.19, 0.64, 0.95, and 1.32 eV, respectively. The electron trap E1 and the hole-like traps P1, P2 and P3 were observed to originate from the point defects or their complexes in the material. The hole-like traps reflected the changes created in the population of the surface states owing to the capture of the surface states; these traps originated from the point defects related to the nitrogen vacancy.


2021 ◽  
Author(s):  
Lingmei Zhang ◽  
Yuanyuan Miao ◽  
Zhipeng Cao ◽  
Shuai Qiu ◽  
Guangping Zhang ◽  
...  

Abstract Based on first-principles calculations, the bias-induced evolution of hybrid interface states in π-conjugated tricene and insulating octane magnetic molecular junctions is investigated. Obvious bias-induced splitting and energy shift of the spin-resolved hybrid interface states are observed in the two junctions. The recombination of the shifted hybrid interface states from different interfaces makes the spin polarization around the Fermi energy strongly bias dependent. The transport calculations demonstrate that in the π-conjugated tricene junction, the bias-dependent hybrid interface states work efficiently for large current, current spin polarization, and distinct tunneling magnetoresistance. But in the insulating octane junction, the spin-dependent transport via the hybrid interface states is inhibited, which is only slightly disturbed by the bias. This work reveals the phenomenon of bias-induced reconstruction of hybrid interface states in molecular spinterface devices, and the underlying role of molecular conjugated orbitals in the transport ability of hybrid interface states.


Sign in / Sign up

Export Citation Format

Share Document