Tunnelling molecular motion in glassy glycerol at very low temperatures as studied by1H SQUID nuclear magnetic resonance

2000 ◽  
Vol 12 (24) ◽  
pp. 5155-5168 ◽  
Author(s):  
Yoshiro Akagi ◽  
Nobuo Nakamura
1963 ◽  
Vol 36 (2) ◽  
pp. 318-324
Author(s):  
W. P. Slichter ◽  
D. D. Davis

Abstract Nuclear magnetic resonance measurements have been made on natural rubber to examine how frequency, temperature, and crystallinity affect the nuclear relaxation. Moecular motions were studied by observing NMR linewidths and spin-lattice relaxation times at temperatures between −100° and 100° C, and at radio frequencies between 2 and 60 Mc. The effect of crystallinity was seen in measurements on stark rubber. The relation between frequency and temperature in the spin-lattice relaxation process is examined in terms of the Arrhenius equation and the WLF expression. The importance of using frequency as a variable in NMR studies of molecular motion is stressed.


Sign in / Sign up

Export Citation Format

Share Document