Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings

2011 ◽  
Vol 22 (4) ◽  
pp. 045708 ◽  
Author(s):  
Rujiang Hao ◽  
Zhike Peng ◽  
Zhipeng Feng ◽  
Fulei Chu
2014 ◽  
Vol 493 ◽  
pp. 337-342 ◽  
Author(s):  
Achmad Widodo ◽  
I. Haryanto ◽  
T. Prahasto

This paper deals with implementation of intelligent system for fault diagnostics of rolling element bearing. In this work, the proposed intelligent system was basically created using support vector machine (SVM) due to its excellent performance in classification task. Moreover, SVM was modified by introducing wavelet function as kernel for mapping input data into feature space. Input data were vibration signals acquired from bearings through standard data acquisition process. Statistical features were then calculated from bearing signals, and extraction of salient features was conducted using component analysis. Results of fault diagnostics are shown by observing classification of bearing conditions which gives plausible accuracy in testing of the proposed system.


2019 ◽  
Vol 19 (2) ◽  
pp. 390-411 ◽  
Author(s):  
David Benjamin Verstraete ◽  
Enrique López Droguett ◽  
Viviana Meruane ◽  
Mohammad Modarres ◽  
Andrés Ferrada

With the availability of cheaper multisensor suites, one has access to massive and multidimensional datasets that can and should be used for fault diagnosis. However, from a time, resource, engineering, and computational perspective, it is often cost prohibitive to label all the data streaming into a database in the context of big machinery data, that is, massive multidimensional data. Therefore, this article proposes both a fully unsupervised and a semi-supervised deep learning enabled generative adversarial network-based methodology for fault diagnostics. Two public datasets of vibration data from rolling element bearings are used to evaluate the performance of the proposed methodology for fault diagnostics. The results indicate that the proposed methodology is a promising approach for both unsupervised and semi-supervised fault diagnostics.


Sign in / Sign up

Export Citation Format

Share Document