End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization

2005 ◽  
Vol 16 (9) ◽  
pp. 1776-1780 ◽  
Author(s):  
Bifeng Pan ◽  
Limei Ao ◽  
Feng Gao ◽  
Hongye Tian ◽  
Rong He ◽  
...  
2019 ◽  
Vol 15 ◽  
pp. 1407-1415 ◽  
Author(s):  
Maximilian Niehues ◽  
Patricia Tegeder ◽  
Bart Jan Ravoo

We propose a two-step ligand exchange for the selective end-functionalization of gold nanorods (AuNR) by thiolated cyclodextrin (CD) host molecules. As a result of the complete removal of the precursor capping agent cetyltrimethylammonium bromide (CTAB) by a tetraethylene glycol derivative, competitive binding to the host cavity was prevented, and reversible, light-responsive assembly and disassembly of the AuNR could be induced by host–guest interaction of CD on the nanorods and a photoswitchable arylazopyrazole cross-linker in aqueous solution. The end-to-end assembly of AuNR could be effectively controlled by irradiation with UV and visible light, respectively, over four cycles. By the introduction of AAP, previous disassembly limitations based on the photostationary states of azobenzenes could be solved. The combination photoresponsive interaction and selectively end-functionalized nanoparticles shows significant potential in the reversible self-assembly of inorganic–organic hybrid nanomaterials.


2017 ◽  
Vol 62 (1-2) ◽  
pp. 23-31
Author(s):  
L.C. Şuşu ◽  
◽  
A.M. Crăciun ◽  
S. Aştilean ◽  
◽  
...  

2020 ◽  
Vol 124 (5) ◽  
Author(s):  
Srimanta Pal ◽  
Anushree Dutta ◽  
Manideepa Paul ◽  
Arun Chattopadhyay

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Damian Dziubak ◽  
Kamil Strzelak ◽  
Slawomir Sek

Supported lipid membranes are widely used platforms which serve as simplified models of cell membranes. Among numerous methods used for preparation of planar lipid films, self-assembly of bicelles appears to be promising strategy. Therefore, in this paper we have examined the mechanism of formation and the electrochemical properties of lipid films deposited onto thioglucose-modified gold electrodes from bicellar mixtures. It was found that adsorption of the bicelles occurs by replacement of interfacial water and it leads to formation of a double bilayer structure on the electrode surface. The resulting lipid assembly contains numerous defects and pinholes which affect the permeability of the membrane for ions and water. Significant improvement in morphology and electrochemical characteristics is achieved upon freeze–thaw treatment of the deposited membrane. The lipid assembly is rearranged to single bilayer configuration with locally occurring patches of the second bilayer, and the number of pinholes is substantially decreased. Electrochemical characterization of the lipid membrane after freeze–thaw treatment demonstrated that its permeability for ions and water is significantly reduced, which was manifested by the relatively high value of the membrane resistance.


Author(s):  
Xiaoya Peng ◽  
Dan Li ◽  
Yuanting Li ◽  
Haibo Xing ◽  
Wei Deng

Antibiotic contaminants in aqueous media pose serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly...


Sign in / Sign up

Export Citation Format

Share Document