Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs

2012 ◽  
Vol 22 (1) ◽  
pp. 015002 ◽  
Author(s):  
S Zhao ◽  
A Erturk
Author(s):  
Ugur Aridogan ◽  
Ipek Basdogan ◽  
Alper Erturk

Vibration-based energy harvesting using cantilevered piezoelectric beam has been extensively studied over the last decade. In this study, as an alternative to resonant piezoelectric cantilevers, we studied multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates. Analytical electroelastic model of the multiple patch-based piezoelectric harvesters attached on a thin plate is provided based on distributed-parameter modeling approach for series and parallel configurations of the patches. An experimental setup is built with series-configuration of double patch-based harvesters attached on the surfaces of all-four-edges clamped (CCCC) rectangular aluminum plate. Analytical simulations and experimental validations of power generation of the harvesters are performed in a case study. The experimental and analytical frequency response functions (FRF) relating voltage output and vibration response to force input are obtained. The analytical model is validated by comparing analytical and experimental FRFs for a wide range of resistive electrical boundary conditions. The harvested power output across the various resistive loads is explored with a focus on the first four modes of the aluminum plate. Experimental and analytical results are shown to be in agreement for multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates.


Author(s):  
Sihong Zhao ◽  
Alper Erturk

Energy harvesting from ambient environment has received increasing attention over the last decade due to the need for minimizing the dependence on conventional batteries in wireless applications. Among the methods of vibration-to-electricity conversion, piezoelectric transduction has been investigated by numerous research groups due to the ease of application and high power density offered by piezoelectric materials. Electromechanical modeling efforts of piezoelectric energy harvesters have been mostly focused on deterministic forms of excitation input, as in the typical case of harmonic excitation. In most practical applications, however, ambient vibrational energy is often stochastic with broad frequency content. This paper presents analytical and numerical modeling, simulations, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The models employed herein are based on distributed-parameter electroelastic solution to ensure that the effects of higher vibration modes are included. The goal is to predict the expected value of the power output in terms of the given power spectral density (PSD) or time history of the random vibration input. The analytical estimations are based on the PSD of broadband random base excitation and distributed-parameter frequency response functions (FRFs) of the coupled voltage and vibration response. The numerical simulations use the Fourier series representation of base acceleration history in an ordinary differential equation solver that employs first-order electroelastic equations. The simulations are compared against the experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The analytical and numerical simulations exhibit very good agreement with the experimental measurements. Soft and hard ceramic and single crystal bimorphs (made of PZT-5H, PZT-8, PMN-PZT, and PMN-PZT-Mn) are compared for broadband random excitation through a theoretical case study.


2020 ◽  
Vol 59 (SP) ◽  
pp. SPPD04
Author(s):  
S. Aphayvong ◽  
T. Yoshimura ◽  
S. Murakami ◽  
K. Kanda ◽  
N. Fujimura

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.


Sign in / Sign up

Export Citation Format

Share Document