Phase stability of  -Pu alloys: a key role of chemical short range order

2004 ◽  
Vol 12 (4) ◽  
pp. 693-707 ◽  
Author(s):  
G Robert ◽  
C Colinet ◽  
B Siberchicot ◽  
A Pasturel
2019 ◽  
Vol 256 (8) ◽  
pp. 1900002 ◽  
Author(s):  
Jaehong Park ◽  
In Won Yeu ◽  
Gyuseung Han ◽  
Cheol Seong Hwang ◽  
Jung‐Hae Choi

2018 ◽  
Vol 35 (3) ◽  
pp. 504 ◽  
Author(s):  
M. Q. Liu ◽  
C. Y. Zhao ◽  
B. X. Wang ◽  
Xing Fang

2011 ◽  
Vol 1298 ◽  
Author(s):  
M. Muzyk ◽  
D. Nguyen-Manh ◽  
K.J. Kurzydlowski ◽  
N.L. Baluc ◽  
S.L. Dudarev

ABSTRACTWe have performed density-functional theory (DFT) calculations of phase stability, formation energies of radiation defects in tungsten-based binaries W-Ta and W-V. These alloys are candidate for DEMO divertor applications because of their high melting point and expected improved ductility and fracture toughness in comparison with tungsten. We have identified the lowest energy intermetallic compounds, which should form at low temperatures, and calculated the effective inter-atomic interactions. Using Monte-Carlo calculations, we calculated the temperature of order-disorder phase transformations for these alloys. The predicted temperature of order-disorder phase transformations is relatively low and at high temperature it is found that the short-range order is present for both alloys. Ab-initio calculations also show that vanadium atoms strongly trap self-interstitial atom defects in W-V alloys, whereas Ta atoms in W-Ta alloys have very little effect on either the formation energy or thermally activated mobility of self-interstitial atom defects.


2011 ◽  
Vol 112 (5) ◽  
pp. 848-859 ◽  
Author(s):  
O. I. Gorbatov ◽  
A. R. Kuznetsov ◽  
Yu. N. Gornostyrev ◽  
A. V. Ruban ◽  
N. V. Ershov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document