Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues

2001 ◽  
Vol 22 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Hermann Scharfetter ◽  
Helmut K Lackner ◽  
Javier Rosell
2013 ◽  
Vol 647 ◽  
pp. 560-565 ◽  
Author(s):  
Qiang Du ◽  
Bao Dong Bai ◽  
Li Ke

Magnetic induction tomography (MIT) is a biologic tomography technology, which is to obtain the conductivity distribution by detecting the data on the boundary of the imaging area based on the eddy current principle. The small impedance difference between biological tissues makes the eddy current weak, and it leads to a direct effect on the biological impedance measurement and imaging sensitivity. A measured data standardization method is presented in this paper for enhancing the measured data sensitivity, and combined with the back-projection reconstruction algorithm to get reconstruction image. It is applied to a variety of measurement and the simulation experiment based on the calculation results of finite-element methods. The reconstructed images indicate that the method can improve the image resolution and sensitivity, and which provides an effective data standardization and reconstruction algorithm for the magnetic induction tomography.


2019 ◽  
Vol 61 (3) ◽  
pp. 255-259
Author(s):  
Lipan Zhang ◽  
Qifeng Meng ◽  
Kai Song ◽  
Ming Gao ◽  
Zhiyuan Cheng

Author(s):  
Jingwen Wang ◽  
Xu Wang ◽  
Dan Yang ◽  
Kaiyang Wang

Background: Image reconstruction of magnetic induction tomography (MIT) is a typical ill-posed inverse problem, which means that the measurements are always far from enough. Thus, MIT image reconstruction results using conventional algorithms such as linear back projection and Landweber often suffer from limitations such as low resolution and blurred edges. Methods: In this paper, based on the recent finite rate of innovation (FRI) framework, a novel image reconstruction method with MIT system is presented. Results: This is achieved through modeling and sampling the MIT signals in FRI framework, resulting in a few new measurements, namely, fourier coefficients. Because each new measurement contains all the pixel position and conductivity information of the dense phase medium, the illposed inverse problem can be improved, by rebuilding the MIT measurement equation with the measurement voltage and the new measurements. Finally, a sparsity-based signal reconstruction algorithm is presented to reconstruct the original MIT image signal, by solving this new measurement equation. Conclusion: Experiments show that the proposed method has better indicators such as image error and correlation coefficient. Therefore, it is a kind of MIT image reconstruction method with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document