signal conditioning
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 84)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kalipada Chatterjee ◽  
Subrat Sahu ◽  
Venugopal Arumuru ◽  
Rajan jha

Abstract An optical signal conditioning technique for dynamic modulation of signals and real-time monitoring of events is pivotal for developing various optical systems at micro/nano dimensions. The utilities of such technique include controllable signal enhancement and distinctive response towards external stimuli, with reconfigurable operational range. Here, we propose and demonstrate an optical technique based on the parallel integration of fiber modal interferometers for optical response enhancement and multi-signal monitoring. Overlap of the interferometers’ characteristic spectra facilitates controllable signal filtering, attenuation, and amplification of interferometer’s response towards dynamic field over wide frequency range of 1 Hz – 1 kHz. Signal to noise ratio (SNR) enhancement of 9 dB is achieved by applying 1 volt about the reference interferometer. The system enables real-time modulation of optical signals and multipoint signal monitoring using machine learning for various applications such as mechanical vibrations, acoustic fields, biological samples, fluid movement, and other similar dynamic fields.


Navigation ◽  
2021 ◽  
Author(s):  
Johannes Rossouw van der Merwe ◽  
Fabio Garzia ◽  
Alexander Rügamer ◽  
Wolfgang Felber

2021 ◽  
Author(s):  
Lidong Zheng ◽  
Haobin Dong ◽  
Wang Luo ◽  
Jian Ge ◽  
Huan Liu

2021 ◽  
pp. 93-106
Author(s):  
G. Anand ◽  
T. Thyagarajan ◽  
B. Aashique Roshan ◽  
L. Rajeshwar ◽  
R. Shyam Balaji

Author(s):  
Ismael Payo ◽  
J. L. Polo ◽  
Blanca Lopez ◽  
Diana Serrano ◽  
Antonio M. Rodríguez ◽  
...  

Abstract Conductive Hydrogels are soft materials which have been used by some researchers as resistive strain sensors in the last years. The electrical resistance change, when the sensor is stretched or compressed, is usually measured by the two-electrode method. This method is not always suitable to measure the electrical resistance of polymers-based materials, like hydrogels, because it could be highly influenced by the electrode/sample interface, as explained in this study. For this reason, a signal conditioning circuit, based on four-electrode impedance measurements, is proposed to measure the electrical resistance change when the gel is stretched or compressed. Experimental results show that the tested gels can be used as resistance force/pressure sensors with a quite linear behaviour.


Author(s):  
Eduardo Horbach ◽  
Josivaldo Godoy Da Silva ◽  
Daniela Araújo de Almeida ◽  
Iandara Schettert Silva

This research aimed to develop a biomedical dynamometer capable of measuring the grip strength of the forepaws of laboratory mices to verify the posterior phase, the effect of modeled cerebral palsy in the animal. The equipment was developed using a stainless steel blade, two double strain gages, a signal conditioning circuit that was connected to a software for acquisition, processing and plotting of graphs and tables in Excel. The metal blade has a length of 18.5 cm, a width of 1.5 cm and a thickness of 2 mm and a double strain gage model pa-09-125ha-350-l8 from Excel Sensors (Brazil), was glued to each face. The two double strain gages were connected in a Wheatstone bridge, which produces an analog response due to mechanical deformation of the blade, with force applied by the mice. This response was submitted to a signal conditioning circuit developed with Arduino that modulated the input wave, generated 10000 times amplification and performed filtering 4th order using Butterworth filter. Finally, a software developed in Labview 2019 of National Instruments (USA) was used for acquisition, processing and plotting of graphs and tables in Excel of the measurements performed. In the next step, the dynamometer was calibrated for sequential loading of masses of 0, 15.48 g, 31.53 g, 46.88 g to 62.47 g and also for sequential unloading of the same masses. For this, the masses were hung on a nylon string that was attached to the free end of the metal sheet. The final test was to measure the response time of the dynamometer with a stopwatch, when hanging a mass of 62.47 g on the nylon thread that was cut abruptly with scissors. Some of the main results of the calibration were as follows: 15.48 g generated 3.70 V, 31.53 g generated 7.48 V and 62.47 g gene rated 14.80 V and the response time was 0.3 s. These answers show that the dynamometer can be used to measure the grip strength of mice and can be modified for use in humans.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1982
Author(s):  
Marko Petkovsek ◽  
Peter Zajec

This paper focuses on a differential voltage measurement in low-voltage automotive devices whose subunits are separated with a low-side safety switch. In contrast to conventional applications with high-side switches, a common-mode voltage (CMV) with negative polarity exists at the input of the signal conditioning circuitry. To overcome the shortage of dedicated integrated circuits capable of withstanding negative CMV, the paper investigates single- and two-stage differential circuits with single-supplied operational amplifiers to find a cost-optimized counterpart. In addition, the proposed procedure tunes the circuit parameters in such a manner to obtain the largest possible full-scale range at the output. Though, such optimization results in very uncommon values for gain and reference voltages. This issue is additionally evaluated for reference voltages that are either cost-effective or more easily accessible to increase the circuit feasibility. Since the impact of resistances on circuits’ behaviour could be diminished to a great extent using high-precision and matched pair resistors, the sensitivity analysis was investigated only for a reference voltage change. Furthermore, a reversed termination of measured voltages results in a simplified reference voltage selection without hindering circuits’ performance, proven by simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document