scholarly journals Endowing the nonlinear sigma model with a flat connection structure: a way to renormalization

2005 ◽  
Vol 2005 (08) ◽  
pp. 048-048 ◽  
Author(s):  
Ruggero Ferrari
1991 ◽  
Vol 06 (08) ◽  
pp. 1369-1383 ◽  
Author(s):  
DIMITRA KARABALI

Soliton operators of fractional spin and statistics are constructed using canonical quantization of the O(3) nonlinear sigma model with a topological Hopf action in 2+1 dimensions. The role of the Hopf term as the nontrivial holonomy of a flat connection in the configuration space is emphasized.


2008 ◽  
Vol 23 (02) ◽  
pp. 211-232 ◽  
Author(s):  
DANIELE BETTINELLI ◽  
RUGGERO FERRARI ◽  
ANDREA QUADRI

Recently a perturbative theory has been constructed, starting from the Feynman rules of the nonlinear sigma model at the tree level in the presence of an external vector source coupled to the flat connection and of a scalar source coupled to the nonlinear sigma model constraint (flat connection formalism). The construction is based on a local functional equation, which overcomes the problems due to the presence (already at one loop) of nonchiral symmetric divergences. The subtraction procedure of the divergences in the loop expansion is performed by means of minimal subtraction of properly normalized amplitudes in dimensional regularization. In this paper we complete the study of this subtraction procedure by giving the formal proof that it is symmetric to all orders in the loopwise expansion. We provide further arguments on the issue that, within our subtraction strategy, only two parameters can be consistently used as physical constants.


1997 ◽  
Vol 12 (35) ◽  
pp. 2699-2705 ◽  
Author(s):  
Amitabha Lahiri

A dynamical non-Abelian two-form potential gives masses to vector bosons via a topological coupling.1 Unlike in the Abelian case, the two-form cannot be dualized to Goldstone bosons. Duality is restored by coupling a flat connection to the theory in a particular way, and the new action is then dualized to a nonlinear sigma model. The presence of the flat connection is crucial, which saves the original mechanism of Higgs-free topological mass generation from being dualized to a sigma model.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2009 ◽  
Vol 26 (7) ◽  
pp. 075017 ◽  
Author(s):  
A Beesham ◽  
S V Chervon ◽  
S D Maharaj

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Yutaka Akagi ◽  
Yuki Amari ◽  
Nobuyuki Sawado ◽  
Yakov Shnir

Sign in / Sign up

Export Citation Format

Share Document