scholarly journals Conformal geometry on a class of embedded hypersurfaces in spacetimes

Author(s):  
Abbas Mohamed Sherif ◽  
Peter K S Dunsby

Abstract In this work, we study various geometric properties of embedded spacelike hypersurfaces in $1+1+2$ decomposed spacetimes with a preferred spatial direction, denoted $e^{\mu}$, which are orthogonal to the fluid flow velocity of the spacetime and admit a proper conformal transformation. To ensure non-vanishing and positivity of the scalar curvature of the induced metric on the hypersurface, we impose that the scalar curvature of the conformal metric is non-negative and that the associated conformal factor $\varphi$ satisfies $\hat{\varphi}^2+2\hat{\hat{\varphi}}>0$, where \hat{\ast} denotes derivative along the preferred spatial direction. Firstly, it is demonstrated that such hypersurface is either of Einstein type or the spatial twist vanishes on them, and that the scalar curvature of the induced metric is constant. It is then proved that if the hypersurface is compact and of Einstein type and admits a proper conformal transformation, then these hypersurfaces must be isomorphic to the 3-sphere, where we make use of some well known results on Riemannian manifolds admitting conformal transformations. If the hypersurface is not of Einstein type and have nowhere vanishing sheet expansion, we show that this conclusion fails. However, with the additional conditions that the scalar curvatures of the induced metric and the conformal metric coincide, the associated conformal factor is strictly negative and the third and higher order derivatives of the conformal factor vanish, the conclusion that the hypersurface is isomorphic to the 3-sphere follows. Furthermore, additional results are obtained under the conditions that the scalar curvature of a metric conformal to the induced metric is also constant. Finally, we consider some of our results in the context of locally rotationally symmetric spacetimes and show that, if the hypersurfaces are compact and not of Einstein type, then under certain specified conditions the hypersurface is isomorphic to the 3-sphere, where we constructed explicit examples of several proper conformal Killing vector fields along $e^{\mu}$.

2016 ◽  
Vol 13 (03) ◽  
pp. 1650030 ◽  
Author(s):  
Suhail Khan ◽  
Tahir Hussain ◽  
Gulzar Ali Khan

The aim of this paper is to investigate teleparallel conformal Killing vector fields (CKVFs) in plane symmetric non-static spacetimes. Ten teleparallel conformal Killing’s equations are obtained which are linear in the components of the teleparallel CKVF [Formula: see text]. A general solution of these equations comprising the components of CKVF and conformal factor is presented, which subject to some integrability conditions. For seven particular choices of the metric functions, the integrability conditions are completely solved to get the final form of teleparallel CKVFs and conformal factor. In four different cases we get proper CKVFs, while in the remaining three cases it is shown that teleparallel CKVFs reduce to teleparallel homothetic or teleparallel Killing vector fields.


2019 ◽  
Vol 16 (11) ◽  
pp. 1950180 ◽  
Author(s):  
I. P. Lobo ◽  
G. G. Carvalho

Motivated by the hindrance of defining metric tensors compatible with the underlying spinor structure, other than the ones obtained via a conformal transformation, we study how some geometric objects are affected by the action of a disformal transformation in the closest scenario possible: the disformal transformation in the direction of a null-like vector field. Subsequently, we analyze symmetry properties such as mutual geodesics and mutual Killing vectors, generalized Weyl transformations that leave the disformal relation invariant, and introduce the concept of disformal Killing vector fields. In most cases, we use the Schwarzschild metric, in the Kerr–Schild formulation, to verify our calculations and results. We also revisit the disformal operator using a Newman–Penrose basis to show that, in the null-like case, this operator is not diagonalizable.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850063
Author(s):  
Amjad Mahmood ◽  
Ahmad T. Ali ◽  
Suhail Khan

Our aim in this paper is to obtain concircular vector fields (CVFs) on the Lorentzian manifold of Bianchi type-I spacetimes. For this purpose, two different sets of coupled partial differential equations comprising ten equations each are obtained. The first ten equations, known as conformal Killing equations are solved completely and components of conformal Killing vector fields (CKVFs) are obtained in different possible cases. These CKVFs are then substituted into second set of ten differential equations to obtain CVFs. It comes out that Bianchi type-I spacetimes admit four-, five-, six-, seven- or 15-dimensional CVFs for particular choices of the metric functions. In many cases, the CKVFs of a particular metric are same as CVFs while there exists few cases where proper CKVFs are not CVFs.


2015 ◽  
Vol 26 (04) ◽  
pp. 1540006 ◽  
Author(s):  
Paul Cernea ◽  
Daniel Guan

In the process of finding Einstein metrics in dimension n ≥ 3, we can search critical metrics for the scalar curvature functional in the space of the fixed-volume metrics of constant scalar curvature on a closed oriented manifold. This leads to a system of PDEs (which we call the Fischer–Marsden Equation, after a conjecture concerning this system) for scalar functions, involving the linearization of the scalar curvature. The Fischer–Marsden conjecture said that if the equation admits a solution, the underlying Riemannian manifold is Einstein. Counter-examples are known by O. Kobayashi and J. Lafontaine. However, almost all the counter-examples are homogeneous. Multiple solutions to this system yield Killing vector fields. We show that the dimension of the solution space W can be at most n+1, with equality implying that (M, g) is a sphere with constant sectional curvatures. Moreover, we show that the identity component of the isometry group has a factor SO(W). We also show that geometries admitting Fischer–Marsden solutions are closed under products with Einstein manifolds after a rescaling. Therefore, we obtain a lot of non-homogeneous counter-examples to the Fischer–Marsden conjecture. We then prove that all the homogeneous manifold M with a solution are in this case. Furthermore, we also proved that a related Besse conjecture is true for the compact homogeneous manifolds.


Sign in / Sign up

Export Citation Format

Share Document