The two-point gradient methods for nonlinear inverse problems based on Bregman projections

2020 ◽  
Vol 36 (4) ◽  
pp. 045012
Author(s):  
M Zhong ◽  
W Wang
Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R251-R269 ◽  
Author(s):  
Bas Peters ◽  
Brendan R. Smithyman ◽  
Felix J. Herrmann

Nonlinear inverse problems are often hampered by local minima because of missing low frequencies and far offsets in the data, lack of access to good starting models, noise, and modeling errors. A well-known approach to counter these deficiencies is to include prior information on the unknown model, which regularizes the inverse problem. Although conventional regularization methods have resulted in enormous progress in ill-posed (geophysical) inverse problems, challenges remain when the prior information consists of multiple pieces. To handle this situation, we have developed an optimization framework that allows us to add multiple pieces of prior information in the form of constraints. The proposed framework is more suitable for full-waveform inversion (FWI) because it offers assurances that multiple constraints are imposed uniquely at each iteration, irrespective of the order in which they are invoked. To project onto the intersection of multiple sets uniquely, we use Dykstra’s algorithm that does not rely on trade-off parameters. In that sense, our approach differs substantially from approaches, such as Tikhonov/penalty regularization and gradient filtering. None of these offer assurances, which makes them less suitable to FWI, where unrealistic intermediate results effectively derail the inversion. By working with intersections of sets, we avoid trade-off parameters and keep objective calculations separate from projections that are often much faster to compute than objectives/gradients in 3D. These features allow for easy integration into existing code bases. Working with constraints also allows for heuristics, where we built up the complexity of the model by a gradual relaxation of the constraints. This strategy helps to avoid convergence to local minima that represent unrealistic models. Using multiple constraints, we obtain better FWI results compared with a quadratic penalty method, whereas all definitions of the constraints are in terms of physical units and follow from the prior knowledge directly.


2007 ◽  
Vol 121 (5) ◽  
pp. 3125-3125
Author(s):  
Andrew A. Ganse ◽  
Robert I. Odom ◽  
Andrew A. Ganse ◽  
Robert I. Odom

2012 ◽  
Vol 58 (210) ◽  
pp. 795-808 ◽  
Author(s):  
Marijke Habermann ◽  
David Maxwell ◽  
Martin Truffer

AbstractInverse problems are used to estimate model parameters from observations. Many inverse problems are ill-posed because they lack stability, meaning it is not possible to find solutions that are stable with respect to small changes in input data. Regularization techniques are necessary to stabilize the problem. For nonlinear inverse problems, iterative inverse methods can be used as a regularization method. These methods start with an initial estimate of the model parameters, update the parameters to match observation in an iterative process that adjusts large-scale spatial features first, and use a stopping criterion to prevent the overfitting of data. This criterion determines the smoothness of the solution and thus the degree of regularization. Here, iterative inverse methods are implemented for the specific problem of reconstructing basal stickiness of an ice sheet by using the shallow-shelf approximation as a forward model and synthetically derived surface velocities as input data. The incomplete Gauss-Newton (IGN) method is introduced and compared to the commonly used steepest descent and nonlinear conjugate gradient methods. Two different stopping criteria, the discrepancy principle and a recent- improvement threshold, are compared. The IGN method is favored because it is rapidly converging, and it incorporates the discrepancy principle, which leads to optimally resolved solutions.


Sign in / Sign up

Export Citation Format

Share Document