Y2O3-based Memristive Crossbar Array for Synaptic Learning

Author(s):  
Mohit Kumar Gautam ◽  
Sanjay Kumar ◽  
Shaibal Mukherjee

Abstract Here, we report a fabrication of Y2O3-based memristive crossbar array along with an analytical model to evaluate the performance of such memristive array system to understand the forgetting and retention behavior in the neuromorphic computation. The developed analytical model is able to simulate the highly-dense memristive crossbar array based neural network of biological synapses. These biological synapses control the communication efficiency between neurons and can implement the learning capability of the neurons. During electrical stimulation of the memristive devices, the memory transition is exhibited along with the number of applied voltage pulses which is analogous to the real human brain functionality. Further, to obtain the forgetting and retention behavior of the memristive devices, a modified window function equation is proposed by incorporating two novel internal state variables in the form of forgetting rate and retention. The obtained results confirm that the effect of variation in electrical stimuli on forgetting and retention as similar to the biological brain. Therefore, the developed analytical memristive model further can be utilized in the memristive system to develop real-world applications in neuromorphic domains.

1990 ◽  
Vol 43 (7) ◽  
pp. 131-151 ◽  
Author(s):  
Sanda Cleja T¸igoiu ◽  
Eugen Soo´s

We present the microstructural basis, the initial macroscopical formulations, and a possible axiomatic reconstruction of the elastoviscoplastic model for metals based on the use of the local, current, relaxed configurations. Structural analysis and experimental data show that using these configurations offers advantages for the formulation of the material laws when the deformations are small or moderately large. Our review aims to be a concise, historical, and critical exposition of the main stages, contributions and results, which led, during the late sixties and the beginning of seventies, to the formulation of the fundamental ideas lying at the basis of the model. We delineate the role played by Lee, Liu, Teodosiu, Sidoroff, Mandel, and Kratochvil in the first formulation of the theory between 1966 and 1972, as well as the contributions of Dafalias and Loret to the development of the model between 1983 and 1985. Finally, we discuss some results obtained between 1985 and 1988 with models based on local current relaxed configurations.


1997 ◽  
Vol 32 (3) ◽  
pp. 175-181
Author(s):  
W Deng ◽  
A Asundi ◽  
C W Woo

Based on previous work by the authors, a model for anisotropic, kinematic hardening materials is constructed to describe constitutive equations and evolution laws in rate-independent, small deformation plasticity on the basis of thermodynamics. Unlike other theories developed earlier wherein only internal state variables are chosen to describe inelastic deformation, the present paper also considers inelastic strain as an independent variable. This can be shown to reduce to the well-known plastic strain in the case of rate-independent plasticity.


1973 ◽  
Vol 61 (1) ◽  
pp. 159-172 ◽  
Author(s):  
H. Buggisch

The steady two-dimensional problem of reflexion of an oblique partly dispersed plane shock wave from a plane wall is studied analytically. Viscosity, diffusion and heat conduction are neglected. The thermodynamic state of the gas is assumed to be determined by the instantaneous values of the specific entropy s, pressure p and a finite number of internal state variables. Results for the flow field behind the reflected shock are obtained by a perturbation method which is based on the assumption that the influence of relaxation is relatively weak.


Sign in / Sign up

Export Citation Format

Share Document