nonlinear solutions
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Haifa Al-Yousef

Abstract The properties and conditions for the appearance of some nonlinear waves in a three-dimensional semiconductor plasma are discussed, by studying the described plasma fluid system with quantum gradient forces and degraded pressures. Our analytical procedure is built on the reductive perturbation theory to obtain the Kadomtsev-Petvashvili equation for the fluid model and solving it using the direct integration method and the Bäcklund transform. Through different solution methods we got different nonlinear solutions describing different pulse profiles such as soliton, kink and explosive pulses. This model can be used to identify the potential disturbances in a semiconductor plasma.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Alfred Mallet ◽  
Benjamin D.G. Chandran

We show that large-amplitude, non-planar, Alfvén-wave (AW) packets are exact nonlinear solutions of the relativistic magnetohydrodynamic equations when the total magnetic-field strength in the local fluid rest frame ( $b$ ) is a constant. We derive analytic expressions relating the components of the fluctuating velocity and magnetic field. We also show that these constant- $b$ AWs propagate without distortion at the relativistic Alfvén velocity and never steepen into shocks. These findings and the observed abundance of large-amplitude, constant- $b$ AWs in the solar wind suggest that such waves may be present in relativistic outflows around compact astrophysical objects.


ELKHA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 134
Author(s):  
Fabio M Sim ◽  
Eka Budiarto ◽  
Rusman Rusyadi

Differential equations are ubiquitous in many fields of study, yet not all equations, whether ordinary or partial, can be solved analytically. Traditional numerical methods such as time-stepping schemes have been devised to approximate these solutions. With the advent of modern deep learning, neural networks have become a viable alternative to traditional numerical methods. By reformulating the problem as an optimisation task, neural networks can be trained in a semi-supervised learning fashion to approximate nonlinear solutions. In this paper, neural solvers are implemented in TensorFlow for a variety of differential equations, namely: linear and nonlinear ordinary differential equations of the first and second order; Poisson’s equation, the heat equation, and the inviscid Burgers’ equation. Different methods, such as the naive and ansatz formulations, are contrasted, and their overall performance is analysed. Experimental data is also used to validate the neural solutions on test cases, specifically: the spring-mass system and Gauss’s law for electric fields. The errors of the neural solvers against exact solutions are investigated and found to surpass traditional schemes in certain cases. Although neural solvers will not replace the computational speed offered by traditional schemes in the near future, they remain a feasible, easy-to-implement substitute when all else fails.


2021 ◽  
Vol 927 ◽  
Author(s):  
Matthew N. Crowe ◽  
Edward R. Johnson

A coastal eddy is modelled as a barotropic vortex propagating along a coastal shelf. If the vortex speed matches the phase speed of any coastal trapped shelf wave modes, a shelf wave wake is generated leading to a flux of energy from the vortex into the wave field. Using a simple shelf geometry, we determine analytic expressions for the wave wake and the leading-order flux of wave energy. By considering the balance of energy between the vortex and wave field, this energy flux is then used to make analytic predictions for the evolution of the vortex speed and radius under the assumption that the vortex structure remains self-similar. These predictions are examined in the asymptotic limit of small rotation rate and shelf slope and tested against numerical simulations. If the vortex speed does not match the phase speed of any shelf wave, steady vortex solutions are expected to exist. We present a numerical approach for finding these nonlinear solutions and examine the parameter dependence of their structure.


Author(s):  
J. González-Carbajal ◽  
A. Rincón-Casado ◽  
D. García-Vallejo ◽  
J. Domínguez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyyed Mehdi Hosseini Jenab ◽  
Gert Brodin ◽  
James Juno ◽  
Ioannis Kourakis

AbstractElectron holes (EH) are localized modes in plasma kinetic theory which appear as vortices in phase space. Earlier research on EH is based on the Schamel distribution function (df). A novel df is proposed here, generalizing the original Schamel df in a recursive manner. Nonlinear solutions obtained by kinetic simulations are presented, with velocities twice the electron thermal speed. Using 1D-1V kinetic simulations, their propagation characteristics are traced and their stability is established by studying their long-time evolution and their behavior through mutual collisions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractWe investigate the nonlinear Rayleigh–Taylor (RT) instability of a nonhomogeneous incompressible nematic liquid crystal in the presence of a uniform gravitational field. We first analyze the linearized equations around the steady state solution. Thus we construct solutions of the linearized problem that grow in time in the Sobolev space $H^{4}$ H 4 , then we show that the RT equilibrium state is linearly unstable. With the help of the established unstable solutions of the linearized problem and error estimates between the linear and nonlinear solutions, we establish the nonlinear instability of the density, the horizontal and vertical velocities under $L^{1}$ L 1 -norm.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Wrick Sengupta ◽  
Elizabeth J. Paul ◽  
Harold Weitzner ◽  
Amitava Bhattacharjee

While several results have pointed to the existence of exactly quasisymmetric fields on a surface (Garren & Boozer, Phys. Fluids B, vol. 3, 1991, pp. 2805–2821; 2822–2834; Plunk & Helander, J. Plasma Phys., vol. 84, 2018, 905840205), we have obtained the first such solutions using a vacuum surface expansion formalism. We obtain a single nonlinear parabolic partial differential equation for a function $\eta$ such the field strength satisfies $B = B(\eta )$ . Closed-form solutions are obtained in cylindrical, slab and isodynamic geometries. Numerical solutions of the full nonlinear equations in general axisymmetric toroidal geometry are obtained, resulting in a class of quasihelical local vacuum equilibria near an axisymmetric surface. The analytic models provide additional insight into general features of the nonlinear solutions, such as localization of the surface perturbations on the inboard side. The local solutions thus obtained can be continued globally only for special initial surfaces.


Sign in / Sign up

Export Citation Format

Share Document