scholarly journals Central limit theorem for recurrent random walks on a strip with bounded potential

Nonlinearity ◽  
2018 ◽  
Vol 31 (7) ◽  
pp. 3381-3412
Author(s):  
D Dolgopyat ◽  
I Goldsheid
1978 ◽  
Vol 10 (04) ◽  
pp. 852-866
Author(s):  
A. J. Stam

Let be a family of random walks with For ε↓0 under certain conditions the random walk U (∊) n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M ∊ = max {U (∊) n , n ≧ 0}, v 0 = min {n : U (∊) n = M ∊}, v 1 = max {n : U (∊) n = M ∊}. The joint limiting distribution of ∊2σ∊ –2 v 0 and ∊σ∊ –2 M ∊ is determined. It is the same as for ∊2σ∊ –2 v 1 and ∊σ–2 ∊ M ∊. The marginal ∊σ–2 ∊ M ∊ gives Kingman's heavy traffic theorem. Also lim ∊–1 P(M ∊ = 0) and lim ∊–1 P(M ∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U (∊) n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.


2004 ◽  
Vol 41 (01) ◽  
pp. 83-92 ◽  
Author(s):  
Jean Bérard

The central limit theorem for random walks on ℤ in an i.i.d. space-time random environment was proved by Bernabeiet al.for almost all realization of the environment, under a small randomness assumption. In this paper, we prove that, in the nearest-neighbour case, when the averaged random walk is symmetric, the almost sure central limit theorem holds for anarbitrarylevel of randomness.


2014 ◽  
Vol 51 (04) ◽  
pp. 1051-1064
Author(s):  
Hoang-Chuong Lam

The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment on Z without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation (P ω - I)g = f, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.


1984 ◽  
Vol 30 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Gilles Blum

In this article we use a theorem of T.G. Kurtz to prove a central limit theorem for geodesic random walks.


Author(s):  
Jean-Dominique Deuschel ◽  
Xiaoqin Guo

AbstractWe prove a quenched local central limit theorem for continuous-time random walks in $${\mathbb {Z}}^d, d\ge 2$$ Z d , d ≥ 2 , in a uniformly-elliptic time-dependent balanced random environment which is ergodic under space-time shifts. We also obtain Gaussian upper and lower bounds for quenched and (positive and negative) moment estimates of the transition probabilities and asymptotics of the discrete Green’s function.


Sign in / Sign up

Export Citation Format

Share Document