scholarly journals Simulating background shear flow in local gyrokinetic simulations

2019 ◽  
Vol 61 (5) ◽  
pp. 055006 ◽  
Author(s):  
B F McMillan ◽  
J Ball ◽  
S Brunner
1988 ◽  
Vol 190 ◽  
pp. 357-374 ◽  
Author(s):  
R. Grimshaw

Resonant interactions between triads of internal gravity waves propagating in a shear flow are considered for the case when the stratification and the background shear flow vary slowly with respect to typical wavelengths. If ωn, kn(n = 1, 2, 3) are the local frequencies and wavenumbers respectively then the resonance conditions are that ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0. If the medium is only weakly inhomogeneous, then there is a strong resonance and to leading order the resonance conditions are satisfied globally. The equations governing the wave amplitudes are then well known, and have been extensively discussed in the literature. However, if the medium is strongly inhomogeneous, then there is a weak resonance and the resonance conditions can only be satisfied locally on certain space-time resonance surfaces. The equations governing the wave amplitudes in this case are derived, and discussed briefly. Then the results are applied to a study of the hierarchy of wave interactions which can occur near a critical level, with the aim of determining to what extent a critical layer can reflect wave energy.


1991 ◽  
Vol 231 ◽  
pp. 575-598 ◽  
Author(s):  
D. W. Waugh ◽  
D. G. Dritschel

The linear stability of filaments or strips of ‘potential’ vorticity in a background shear flow is investigated for a class of two-dimensional, inviscid, non-divergent models having a linear inversion relation between stream function and potential vorticity. In general, the potential vorticity is not simply the Laplacian of the stream function – the case which has received the greatest attention historically. More general inversion relationships between stream function and potential vorticity are geophysically motivated and give an impression of how certain classic results, such as the stability of strips of vorticity, hold under more general circumstances.In all models, a strip of potential vorticity is unstable in the absence of a background shear flow. Imposing a shear flow that reverses the total shear across the strip, however, brings about stability, independent of the Green-function inversion operator that links the stream function to the potential vorticity. But, if the Green-function inversion operator has a sufficiently short interaction range, the strip can also be stabilized by shear having the same sense as the shear of the strip. Such stabilization by ‘co-operative’ shear does not occur when the inversion operator is the inverse Laplacian. Nonlinear calculations presented show that there is only slight disruption to the strip for substantially less adverse shear than necessary for linear stability, while for co-operative shear, there is major disruption to the strip. It is significant that the potential vorticity of the imposed flow necessary to create shear of a given value increases dramatically as the interaction range of the inversion operator decreases, making shear stabilization increasingly less likely. This implies an increased propensity for filaments to ‘roll-up’ into small vortices as the interaction range decreases, a finding consistent with many numerical calculations performed using the quasi-geostrophic model.


2014 ◽  
Vol 11 ◽  
pp. 3-14 ◽  
Author(s):  
A. Alias ◽  
R.H.J. Grimshaw ◽  
K.R. Khusnutdinova

2021 ◽  
Vol 37 (4) ◽  
Author(s):  
V. V. Bulatov ◽  
Yu. V. Vladimirov ◽  
I. Yu. Vladimirov ◽  
◽  
◽  
...  

Purpose. The description of the internal gravity waves dynamics in the ocean with background fields of shear currents is a very difficult problem even in the linear approximation. The mathematical problem describing wave dynamics is reduced to the analysis of a system of partial differential equations; and while taking into account the vertical and horizontal inhomogeneity, this system of equations does not allow separation of the variables. Application of various approximations makes it possible to construct analytical solutions for the model distributions of buoyancy frequency and background shear ocean currents. The work is aimed at studying dynamics of internal gravity waves in the ocean with the arbitrary and model distributions of density and background shear currents. Methods and Results. The paper represents the numerical and analytical solutions describing the main phase characteristics of the internal gravity wave fields in the stratified ocean of finite depth, both for arbitrary and model distributions of the buoyancy frequency and the background shear currents. The currents are considered to be stationary and horizontally homogeneous on the assumption that the scale of the currents' horizontal and temporal variability is much larger than the characteristic lengths and periods of internal gravity waves. Having been used, the Fourier method permitted to obtain integral representations of the solutions under the Miles – Howard stability condition is fulfilled. To solve the vertical spectral problem, proposed is the algorithm for calculating the main dispersion dependences that determine the phase characteristics of the generated wave fields. The calculations for one real distribution of buoyancy frequency and shear flow profile are represented. Transformation of the dispersion surfaces and phase structures of the internal gravitational waves’ fields is studied depending on the generation parameters. To solve the problem analytically, constant distribution of the buoyancy frequency and linear dependences of the background shear current on depth were used. For the model distribution of the buoyancy and shear flow frequencies, the explicit analytical expressions describing the solutions of the vertical spectral problem were derived. The numerical and asymptotic solutions for the characteristic oceanic parameters were compared. Conclusions. The obtained results show that the asymptotic constructions using the model dependences of the buoyancy frequency and the background shear velocities’ distribution, describe the numerical solutions of the vertical spectral problem to a good degree of accuracy. The model representations, having been applied for hydrological parameters, make it possible to describe qualitatively correctly the main characteristics of internal gravity waves in the ocean with the arbitrary background shear currents.


Sign in / Sign up

Export Citation Format

Share Document