Plasma rotation driven by rotating magnetic fields

2021 ◽  
Vol 63 (3) ◽  
pp. 035027
Author(s):  
Baoming Ren ◽  
Jiadong Zhang ◽  
Zhida Yang ◽  
Guanghui Zhu ◽  
Haiyang Zhou ◽  
...  
2001 ◽  
Vol 46 (1) ◽  
pp. 148-153 ◽  
Author(s):  
A. V. Kartavykh ◽  
É. S. Kopeliovich ◽  
M. G. Mil’vidskii ◽  
V. V. Rakov

1997 ◽  
Vol 10 (12) ◽  
pp. 901-903
Author(s):  
A Haller ◽  
Y Tavrin ◽  
H-J Krause ◽  
P David ◽  
A I Braginski

2008 ◽  
Vol 492 (3) ◽  
pp. 621-630 ◽  
Author(s):  
R. Moll ◽  
H. C. Spruit ◽  
M. Obergaulinger

In a previous paper by the author experiments were described in which the hardness of various metals was increased by rotating them in a magnetic field. It had been observed that metals in a work-hardened condition, and in particular hard steel which had been super-hardened by the “Cloudburst” process of bombardment with steel balls, exhibit a propensity to become still harder by a process of ageing, the spontaneous increase of hardness commencing with the termination of the work-hardening process, and contiuning during a period of several hours or days.


Author(s):  
Eduardo Lascas Neto ◽  
Jonathan P Graves ◽  
Madhusudan Raghunathan ◽  
Cristian Sommariva ◽  
David Pfefferlé

Abstract Strongly peaked tungsten accumulation is a common feature of high performance plasma scenarios in JET with the ITER-like wall, particularly during MHD activity induced by m⁄n = 1⁄1 continuous modes. This study investigates the effect of 1⁄1 long living internal kink modes on heavy impurity transport in the presence of strong flows and NTV ambipolar electric field. A novel formulation which includes these effects is presented and applied in the VENUS-LEVIS code in order to follow tungsten ions in a saturated JET-like 1⁄1 internal kinked toroidally rotating plasma configuration. The synergy between 3D magnetic fields, strong flows and NTV is seen to cause tungsten accumulation in contrast to what is observed in similar axisymmetric configurations. Rapid inward transport of impurities in JET plasmas following the triggering of continuous 1⁄1 modes is explained by the work presented here, and we use the same theory to postulate why outward transport can occur in kinked ASDEX-U plasmas.


Author(s):  
Puhalsky Yan ◽  
Vorobyov Nikolay ◽  
Pirmagomedov Rustam ◽  
Loskutov Svyatoslav ◽  
Yakubovskaya Alla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document