Critical current improvement and resistance evaluation of superconducting joint between Bi2223 tapes

Author(s):  
Yasuaki Takeda ◽  
Kensuke Kobayashi ◽  
Akira Uchida ◽  
Hitoshi Kitaguchi ◽  
Gen Nishijima ◽  
...  

Abstract We improved the critical current (I c) of the superconducting joint between the Bi2223 tapes by introducing the two-step sintering process. The in-field transport I c of ~ 300 A at 4.2 K and 1 T under a 10−9 Ω criterion was successfully demonstrated. The I c improvement can probably be attributed to the enhancement of the intergrain critical current density for a Bi2223 intermediate layer. Ultra-low in-field joint resistance below 10−14 Ω at 4.2 K and 1 T was also demonstrated using current decay measurement. To our best knowledge, this study is the first to demonstrate a practical level of in-field transport I c and ultra-low in-field joint resistance for the superconducting joint between Bi2223 tapes. We believe that this superconducting joint technology will facilitate development of persistent current mode Bi2223 superconducting magnets.

2001 ◽  
Vol 357-360 ◽  
pp. 1230-1233 ◽  
Author(s):  
H. Maeda ◽  
T. Inaba ◽  
M. Sato ◽  
P.X. Zhang ◽  
W.P. Chen

2009 ◽  
Vol 23 (17) ◽  
pp. 3497-3502
Author(s):  
X. XU ◽  
J. H. KIM ◽  
Y. ZHANG ◽  
M. JERCINOVIC ◽  
E. BABIC

We investigated the effects of different operating temperatures on the performance of transport critical current density, Jc, for MgB 2 + 10 wt % C 4 H 6 O 5 MgB 2/ Fe wires. It was shown that the Jc values of the malic acid doped wires sintered at 900°C reached 104 Acm-2 at 20 K and 5 T. The Jc value extrapolated to 2 T and 20 K exceeds the practical level of 105 Acm-2. According to the Kramer plots, the pinning force, FK = Jc1/2 x B1/4, is expected to be a linear function of magnetic field B. The irreversibility field, B irr , at which extrapolated FK reaches zero, was 1.8 T at 32.8 K, 2.8 T at 30 K, 5.7 T at 25 K, 8.6 T at 20 K, and 12.5 T at 15 K, respectively.


2012 ◽  
Vol 48 (6) ◽  
pp. 2485-2489 ◽  
Author(s):  
Hua Jiang ◽  
Zongqing Ma ◽  
Yongchang Liu ◽  
Zhizhong Dong ◽  
Liming Yu ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 77
Author(s):  
Deawha Soh ◽  
Zhanguo Fan ◽  
N. Korobova

<p>Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>X</sub> was prepared by the conventional method of solid state reaction and SHS method. The samples were annealed in different atmosphere in order to examine the influence of atmospheres on the carbon contents in the Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>X</sub> compound. The lowest carbon content in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>X</sub> could be attended when the sample was annealed in O<sub>2</sub> at 800 °C for 100 hours. The CO<sub>2</sub> in air pollute the samples and increase the carbon content in the sintering process. The critical current density of the Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>X</sub> samples will decrease with the increasing carbon contents in the samples. The impurity carbon will deposit in the grain boundary, which makes critical current density lower.</p>


Sign in / Sign up

Export Citation Format

Share Document