Activation energy effect on flame propagation in large-scale vortical flows

2002 ◽  
Vol 6 (3) ◽  
pp. 479-485 ◽  
Author(s):  
L Kagan ◽  
P D Ronney ◽  
G Sivashinsky
2000 ◽  
Vol 120 (1-2) ◽  
pp. 222-232 ◽  
Author(s):  
L. Kagan ◽  
G. Sivashinsky

2009 ◽  
Vol 1156 ◽  
Author(s):  
Meike Hauschildt ◽  
Martin Gall ◽  
Richard Hernandez

AbstractEven after the successful introduction of Cu-based metallization, the electromigration failure risk has remained one of the important reliability concerns for advanced process technologies. The observation of strong bimodality for the electron up-flow direction in dual-inlaid Cu interconnects has added complexity, but is now widely accepted. More recently, bimodality has been reported also in down-flow electromigration, leading to very short lifetimes due to small, slit-shaped voids under vias. For a more thorough investigation of these early failure phenomena, specific test structures were designed based on the Wheatstone Bridge technique. The use of these structures enabled an increase of the tested sample size past 1.1 million, allowing a direct analysis of electromigration failure mechanisms at the single-digit ppm regime. Results indicate that down-flow electromigration exhibits bimodality at very small percentage levels, not readily identifiable with standard testing methods. The activation energy for the down-flow early failure mechanism was determined to be 0.83 ± 0.01 eV. Within the small error bounds of this large-scale statistical experiment, this value is deemed to be significantly lower than the usually reported activation energy of 0.90 eV for electromigration-induced diffusion along Cu/SiCN interfaces. Due to the advantages of the Wheatstone Bridge technique, we were also able to expand the experimental temperature range down to 150 °C, coming quite close to typical operating conditions up to 125 °C. As a result of the lowered activation energy, we conclude that the down-flow early failure mode may control the chip lifetime at operating conditions. The slit-like character of the early failure void morphology also raises concerns about the validity of the Blech-effect for this mechanism. A very small amount of Cu depletion may cause failure even before a stress gradient is established. We therefore conducted large-scale statistical experiments close to the critical current density-length product (jL)*. The results indicate that even at very small failure percentages, this critical product seems to extrapolate to about 2900 ± 400 A/cm for SiCOH-based dielectrics, close to previously determined (jL)* products of about 3000 ± 500 A/cm for the same technology node and dielectric material, acquired with single link interconnects. More detailed studies are currently ongoing to verify the extrapolation methods at small percentages. Furthermore, the scaling behavior of the early failure population was investigated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ikram Ullah ◽  
Rashid Ali ◽  
Hamid Nawab ◽  
Abdussatar ◽  
Iftikhar Uddin ◽  
...  

Abstract This study models the convective flow of Prandtl–Eyring nanomaterials driven by a stretched surface. The model incorporates the significant aspects of activation energy, Joule heating and chemical reaction. The thermal impulses of particles with melting condition is addressed. The system of equations is an ordinary differential equation (ODE) system and is tackled numerically by utilizing the Lobatto IIIA computational solver. The physical importance of flow controlling variables to the temperature, velocity and concentration is analyzed using graphical illustrations. The skin friction coefficient and Nusselt number are examined. The results of several scenarios, mesh-point utilization, the number of ODEs and boundary conditions evaluation are provided via tables.


Author(s):  
Holler Tadej ◽  
Ed M. J. Komen ◽  
Kljenak Ivo

The paper presents the computational fluid dynamics (CFD) combustion modeling approach based on two combustion models. This modeling approach was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont's turbulent flame-speed closure (TFC) model and Lipatnikov's flame-speed closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in nuclear power plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However, substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


2014 ◽  
Vol 577 ◽  
pp. 71-76 ◽  
Author(s):  
Zhi Qiang Wu ◽  
Shu Zhong Wang ◽  
Jun Zhao ◽  
Lin Chen ◽  
Hai Yu Meng

Co-gasification of biomass and coal is increasingly considered as a promising technology for sustainable utilization of coal and large-scale use of biomass. Co-gasification characteristic and kinetic analysis are the basic and essential information for the application of this technology. In this paper, co-gasification behavior of a typical bituminous coal from western China and spent mushroom compost (SMC) was investigated through thermogravimetric analyzer. The temperature interval was from ambient temperature to 1000 ○C with various heating rates (10, 20, 40 ○C•min-1) under carbon dioxide atmosphere. Kinetic parameter was solved through Distribution Activation Energy Model (DAEM). The results indicated that he maximum decomposition rates of the mixture and SMC were higher than that of coal except 25% SMC. Slightly synergistic effect during the co-gasification was found. The average values of the activation energy were 25.07 kJ•mol-1 for bituminous coal, 204.47 kJ•mol-1 for 25% SMC, 123.14 kJ•mol-1 for 50% SMC, 144.05 kJ•mol-1 for 75% SMC and 227.50 kJ•mol-1 for SMC, respectively.


Sign in / Sign up

Export Citation Format

Share Document