scholarly journals A Poisson–Boltzmann approach for a lipid membrane in an electric field

2010 ◽  
Vol 12 (9) ◽  
pp. 095002 ◽  
Author(s):  
Falko Ziebert ◽  
David Lacoste
Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3824
Author(s):  
Guilherme Volpe Bossa ◽  
Sylvio May

Interactions between charges and dipoles inside a lipid membrane are partially screened. The screening arises both from the polarization of water and from the structure of the electric double layer formed by the salt ions outside the membrane. Assuming that the membrane can be represented as a dielectric slab of low dielectric constant sandwiched by an aqueous solution containing mobile ions, a theoretical model is developed to quantify the strength of electrostatic interactions inside a lipid membrane that is valid in the linear limit of Poisson-Boltzmann theory. We determine the electrostatic potential produced by a single point charge that resides inside the slab and from that calculate charge-charge and dipole-dipole interactions as a function of separation. Our approach yields integral representations for these interactions that can easily be evaluated numerically for any choice of parameters and be further simplified in limiting cases.


2017 ◽  
Vol 33 (2) ◽  
pp. 234-242 ◽  
Author(s):  
Bing Bu ◽  
Dechang Li ◽  
Jiajie Diao ◽  
Baohua Ji

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 417
Author(s):  
Jianyu Ji ◽  
Shizhi Qian ◽  
Zhaohui Liu

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for a fixed PAA concentration (electric field), and vortices form at the upstream of the constriction. EOF velocity of viscoelastic fluid becomes spatially and temporally dependent, and the velocity at the exit of the constriction microchannel is much higher than that at its entrance, which is in qualitative agreement with experimental observation from the literature. Under the same apparent viscosity, the time-averaged velocity of the viscoelastic fluid is lower than that of the Newtonian fluid.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Alfredo Iorio ◽  
Samik Sen ◽  
Siddhartha Sen

AbstractBy assuming that not only counter-ions but DNA molecules as well are thermally distributed according to a Boltzmann law, we propose a modified Poisson-Boltzmann equation, at the classical level, as a starting point to compute the effects of quantum fluctuations of the electric field on the interaction among DNA-cation complexes. The latter are modeled here as infinite one-dimensional wires (δ-functions). Our goal is to single out such quantum-vacuum-driven interaction from the counterion-induced and water-related interactions. We obtain a universal, frustration-free Casimir-like (codimension 2) interaction that extensive numerical analysis show to be a good candidate to explain the formation and stability of DNA aggregates. Such Casimir energy is computed for a variety of configurations of up to 19 DNA strands in a hexagonal array. It is found to be many-body.


Sign in / Sign up

Export Citation Format

Share Document