Time fractional advection-dispersion model to study transportation of particles with time-memory for unsteady nonequilibrium suspension in open-channel turbulent flows

2021 ◽  
Author(s):  
Surath Ghosh ◽  
Snehasis Kundu ◽  
Sunil Kumar

Abstract In this study, the effects of time-memory on the mixing and nonequilibrium transportation of particles in an unsteady turbulent flow are investigated. The memory effect of particles is captured through a time-fractional advection-dispersion equation rather than a traditional advection-dispersion equation. The time-fractional derivative is considered in Caputo sense which includes a power-law memory kernel that captures the power-law jumps of particles. The time-fractional model is solved using the Chebyshev collocation method. To make the solution procedure more robust three different kinds of Chebyshev polynomials are considered. The time-fractional derivative is approximated using the finite difference method at small time intervals and numerical solutions are obtained in terms of Chebyshev polynomials. The model solutions are compared with existing experimental data of traditional conditions and satisfactory results are obtained. Apart from this, the effects of time-memory are analyzed for bottom concentration and transient concentration distribution of particles. The results show that for uniform initial conditions, bottom concentration increases with time as the order of fractional derivative decreases. In the case of transient concentration, the value of concentration initially decreases when $T<1$ and thereafter increases throughout the flow depth. The effects of time-memory \textcolor{green}{are} also analyzed under steady flow conditions. Results show that under steady conditions, transient concentration is more sensitive for linear, parabolic, and parabolic-constant models \textcolor{green}{of} sediment diffusivity rather than the constant model.

2021 ◽  
Author(s):  
Thomas TJOCK-MBAGA ◽  
Patrice Ele Abiama ◽  
Jean Marie Ema'a Ema'a ◽  
Germain Hubert Ben-Bolie

Abstract This study derives an analytical solution of a one-dimensional (1D) advection-dispersion equation (ADE) for solute transport with two contaminant sources that takes into account the source term. For a heterogeneous medium, groundwater velocity is considered as a linear function while the dispersion as a nth-power of linear function of space and analytical solutions are obtained for and . The solution in a heterogeneous finite domain with unsteady coefficients is obtained using the Generalized Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). The solutions are validated with the numerical solutions obtained using MATLAB pedpe solver and the existing solution from the proposed solutions. We exanimated the influence of the source term, the heterogeneity parameters and the unsteady coefficient on the solute concentration distribution. The results show that the source term produces a solute build-up while the heterogeneity level decreases the concentration level in the medium. As an illustration, model predictions are used to estimate the time histories of the radiological doses of uranium at different distances from the sources boundary in order to understand the potential radiological impact on the general public.


2021 ◽  
Vol 5 (3) ◽  
pp. 113 ◽  
Author(s):  
Saima Rashid ◽  
Rehana Ashraf ◽  
Ahmet Ocak Akdemir ◽  
Manar A. Alqudah ◽  
Thabet Abdeljawad ◽  
...  

This manuscript assesses a semi-analytical method in connection with a new hybrid fuzzy integral transform and the Adomian decomposition method via the notion of fuzziness known as the Elzaki Adomian decomposition method (briefly, EADM). Moreover, we use the aforesaid strategy to address the time-fractional Fornberg–Whitham equation (FWE) under gH-differentiability by employing different initial conditions (IC). Several algebraic aspects of the fuzzy Caputo fractional derivative (CFD) and fuzzy Atangana–Baleanu (AB) fractional derivative operator in the Caputo sense, with respect to the Elzaki transform, are presented to validate their utilities. Apart from that, a general algorithm for fuzzy Caputo and AB fractional derivatives in the Caputo sense is proposed. Some illustrative cases are demonstrated to understand the algorithmic approach of FWE. Taking into consideration the uncertainty parameter ζ∈[0,1] and various fractional orders, the convergence and error analysis are reported by graphical representations of FWE that have close harmony with the closed form solutions. It is worth mentioning that the projected approach to fuzziness is to verify the supremacy and reliability of configuring numerical solutions to nonlinear fuzzy fractional partial differential equations arising in physical and complex structures.


Author(s):  
Dumitru Vieru ◽  
Constantin Fetecau ◽  
Najma Ahmed ◽  
Nehad Ali Shah

A new time-fractional derivative with Mittag-Leffler memory kernel, called the generalized Atangana-Baleanu time-fractional derivative is defined along with the associated integral operator. Some properties of the new operators are proved. The new operator is suitable to generate by particularization the known Atangana-Baleanu, Caputo-Fabrizio and Caputo time-fractional derivatives. A generalized mathematical model of the advection-dispersion process with kinetic adsorption is formulated by considering the constitutive equation of the diffusive flux with the new generalized time-fractional derivative. Analytical solutions of the generalized advection-dispersion equation with kinetic adsorption are determined using the Laplace transform method. The solution corresponding to the ordinary model is compared with solutions corresponding to the four models with fractional derivatives.


2021 ◽  
Vol 5 (4) ◽  
pp. 209
Author(s):  
Saima Rashid ◽  
Rehana Ashraf ◽  
Fatimah S. Bayones

This article investigates the semi-analytical method coupled with a new hybrid fuzzy integral transform and the Adomian decomposition method via the notion of fuzziness known as the Elzaki Adomian decomposition method (briefly, EADM). In addition, we apply this method to the time-fractional Swift–Hohenberg equation (SHe) with various initial conditions (IC) under gH-differentiability. Some aspects of the fuzzy Caputo fractional derivative (CFD) with the Elzaki transform are presented. Moreover, we established the general formulation and approximate findings by testing examples in series form of the models under investigation with success. With the aid of the projected method, we establish the approximate analytical results of SHe with graphical representations of initial value problems by inserting the uncertainty parameter 0≤℘≤1 with different fractional orders. It is expected that fuzzy EADM will be powerful and accurate in configuring numerical solutions to nonlinear fuzzy fractional partial differential equations arising in physical and complex structures.


2021 ◽  
Vol 13 (14) ◽  
pp. 7796
Author(s):  
Abhishek Sanskrityayn ◽  
Heejun Suk ◽  
Jui-Sheng Chen ◽  
Eungyu Park

Demand has increased for analytical solutions to determine the velocities and dispersion coefficients that describe solute transport with spatial, temporal, or spatiotemporal variations encountered in the field. However, few analytical solutions have considered spatially, temporally, or spatiotemporally dependent dispersion coefficients and velocities. The proposed solutions consider eight cases of dispersion coefficients and velocities: both spatially dependent, both spatiotemporally dependent, both temporally dependent, spatiotemporally dependent dispersion coefficient with spatially dependent velocity, temporally dependent dispersion coefficient with constant velocity, both constant, spatially dependent dispersion coefficient with spatiotemporally dependent velocity, and constant dispersion coefficient with temporally dependent velocity. The spatial dependence is linear, while the temporal dependence may be exponential, asymptotical, or sinusoidal. An advection–dispersion equation with these variable coefficients was reduced to a non-homogeneous diffusion equation using the pertinent coordinate transform method. Then, solutions were obtained in an infinite medium using Green’s function. The proposed analytical solutions were validated against existing analytical solutions or against numerical solutions when analytical solutions were unavailable. In this study, we showed that the proposed analytical solutions could be applied for various spatiotemporal patterns of both velocity and the dispersion coefficient, shedding light on feasibility of the proposed solution under highly transient flow in heterogeneous porous medium.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 255-261
Author(s):  
Yones Esmaeelzade Aghdam ◽  
Behnaz Farnam ◽  
Hosein Jafari

When a particle distributes at a rate that deviates from the classical Brownian motion model, fractional space derivatives have been used to simulate anomalous diffusion or dispersion. When a fractional derivative substitutes the second-order derivative in a diffusion or dispersion model, amplified diffusion occurs (named super-diffusion). The proposed approach in this paper allows seeing the physical background of the newly defined Caputo space-time-fractional derivative and indicates that the order of convergence to approximate such equations has increased.


2020 ◽  
pp. 1724-1732
Author(s):  
Ammar Muslim Abdullhussein ◽  
Hameeda Oda Al-Humedi

In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.


Sign in / Sign up

Export Citation Format

Share Document