kinetic adsorption
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 3)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3338
Author(s):  
Yunjie Ma ◽  
Xin Gao ◽  
Yang Ruan ◽  
Hang Cui ◽  
Li Zhang ◽  
...  

Resin based covalent organic framework material was used as filler for solid phase extraction (SPE), and the solid phase extraction effect was compared with that of traditional COF material (TpBD COFs). The enrichment capacity of four phthalate esters (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate) in beverage samples was investigated by SPE. Adsorption experiments showed that the kinetic adsorption behavior of COF materials for phthalate esters (PAEs) was more consistent with the quasi-second-order kinetic adsorption model, and the static adsorption behavior is more in line with the Freundlich isothermal adsorption model. Solid phase extraction experiments proved that the SPE column prepared with two COF materials as adsorbents had good adsorption effects, high recovery (water: 97.99–100.56% and beverage: 97.93–100.23%) and were reusable (50 cycles), which could meet the requirements for trace detection of phthalate ester. It was found that the solid phase extraction effect was better than the four types of commercial SPE columns. The new COF material reduced the cost of monomer use and provided the possibility for its industrial production. Meanwhile, it also provided a new feasible scheme for enriching trace phthalate esters in practical samples.


2021 ◽  
Vol 37 ◽  
pp. 74-80
Author(s):  
Obanla Oyinlola Rukayat ◽  
Mohammed Farouk Usman ◽  
Ojewumi Modupe Elizabeth ◽  
Odunlami Olyemi Abosede ◽  
Ikpotor Utseoritselaju Faith

Author(s):  
Dumitru Vieru ◽  
Constantin Fetecau ◽  
Najma Ahmed ◽  
Nehad Ali Shah

A new time-fractional derivative with Mittag-Leffler memory kernel, called the generalized Atangana-Baleanu time-fractional derivative is defined along with the associated integral operator. Some properties of the new operators are proved. The new operator is suitable to generate by particularization the known Atangana-Baleanu, Caputo-Fabrizio and Caputo time-fractional derivatives. A generalized mathematical model of the advection-dispersion process with kinetic adsorption is formulated by considering the constitutive equation of the diffusive flux with the new generalized time-fractional derivative. Analytical solutions of the generalized advection-dispersion equation with kinetic adsorption are determined using the Laplace transform method. The solution corresponding to the ordinary model is compared with solutions corresponding to the four models with fractional derivatives.


2021 ◽  
Vol 878 ◽  
pp. 3-8
Author(s):  
Christian Matthew P. Mabborang ◽  
Joshua Nathaniel B. Padrigo ◽  
Gerald Mari Quiachon ◽  
Persia Ada N. de Yro

Heavy metal adsorption (HMA) is one of the remediation techniques used to remove heavy metals from water/wastewater. Composite membranes with functionalized additives for selective adsorption are being investigated. In this study, Carbon Quantum Dots – Polyacrylonitrile/Polycaprolactone nanocomposite membranes are synthesized by electrospinning which is intended for HMA of Cu2+. The nanofiber mats were characterized using SEM, FTIR, and Contact Angle. Batch adsorption process were performed and to utilize the AAS for kinetic adsorption behavior analysis. SEM micrographs revealed the addition of CQD in PAN and PAN/PCL membrane matrix shifted the fiber size distribution from 50 – 100 nm to 150 – 250 nm indicates the decrease in effective surface area. FTIR analysis exhibited vibrational peaks and binding of distinct functional groups such as amine, nitrile, carboxylic, hydroxyl, and carbonyl for CQD, PAN and PCL, respectively. CQD in aqueous form further increases the hydrophilicity of PAN/PCL membrane matrix which is essential for HMA of Cu2+ ions. The increase of nanofiber mat’s adsorption capacity with respect to contact time obtained a maximum at 63.45 mg/g with a maximum efficiency of adsorption at 90.74%. Kinetic adsorption studies show that the pseudo – first order kinetic model best fits the data for CQD – PAN/PCL nanofiber mat in Cu2+ ions obtaining a correlation value of R2 = 0.9418 and a rate constant k = 0.0172 min1 indicating the adsorption behavior follows the physical adsorption process involving Van der Waals forces and hydrogen bonding between the adsorbent and adsorbate.


2021 ◽  
Vol 60 (6) ◽  
pp. 2536-2546
Author(s):  
Trisha Sen ◽  
Yoshiaki Kawajiri ◽  
Matthew J. Realff

Sign in / Sign up

Export Citation Format

Share Document