scholarly journals Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

2013 ◽  
Vol 2013 (03) ◽  
pp. 043-043 ◽  
Author(s):  
J.J Gómez-Cadenas ◽  
J Martín-Albo ◽  
J. Muñoz Vidal ◽  
C Peña-Garay
2020 ◽  
Vol 1643 (1) ◽  
pp. 012026
Author(s):  
Francesco Salamida

Abstract The search for neutrinoless double-beta decay is the most sensitive technique to establish the Majorana nature of neutrinos. Two operating experiments that look for such decays in Ge-76, GERDA and MAJORANA DEMONSTRATOR have achieved the lowest backgrounds and the best energy resolution in the signal region. These are two of the most important detector characteristics for sensitive searches of this undiscovered decay. The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay (LEGEND) Collaboration has been formed to pursue a tonne-scale Ge-76 experiment that integrates the best technologies from these two experiments and others in the field. The Collaboration is developing a phased experimental program that uses existing resources as appropriate to expedite physics results, with the ultimate discovery potential at a decay half-life beyond 1028 years.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
A. Jany ◽  
M. Misiaszek ◽  
T. Mroz ◽  
K. Panas ◽  
G. Zuzel ◽  
...  

AbstractExperiments searching for the neutrinoless double beta decay in $$^{76}$$ 76 Ge are currently achieving the lowest background level and, in connection with the excellent energy resolution of germanium detectors, they exhibit the best discovery potential for the decay. Expansion to a ton scale of the active target mass is presently considered – in this case on-site production of the detectors may be an option. In this paper we describe the fabrication and characterization procedures of a prototype detector with a small p+ contact, which enhances the abilities of the pulse shape discrimination – one of the most important tools for background reduction. Simulations of the shapes of pulses from the detector were carried out and tuned, taking the advantage of the fact that all the parameters of the Ge crystal, cryostat and of the spectroscopic chain were known. As a result, the pulse shape analyses performed on the simulated and measured data agree very well. The worked out method allows to optimize geometry and crystal parameters in terms of pulse shape analysis efficiency, before the actual production of the detectors.


2016 ◽  
Vol 31 (18) ◽  
pp. 1630017 ◽  
Author(s):  
Igor Ostrovskiy ◽  
Kevin O’Sullivan

We review current experimental efforts to search for neutrinoless double beta decay [Formula: see text]. A description of the selected leading experiments is given and the strongest recent results are compared in terms of achieved background indexes (BI) and limits on effective Majorana mass. A combined limit is also shown. The second part of the review covers next generation experiments, highlighting the challenges and new technologies that may be necessary to achieve a justifiable discovery potential. A potential synergy with direct dark matter searches, which could be an especially prudent strategy in case the axial vector coupling constant is quenched in [Formula: see text] decay, is emphasized.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Takehiko Asaka ◽  
Hiroyuki Ishida ◽  
Kazuki Tanaka

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Lukas Graf ◽  
Sudip Jana ◽  
Manfred Lindner ◽  
Werner Rodejohann ◽  
Xun-Jie Xu

2007 ◽  
Vol 22 (31) ◽  
pp. 5875-5888 ◽  
Author(s):  
WERNER RODEJOHANN ◽  
KATHRIN A. HOCHMUTH

We conduct a detailed analysis of the phenomenology of two predictive see-saw scenarios which lead to the Quark-Lepton Complementarity relation θ12+θC = π/4. The neutrino mixing observables and their correlations, neutrinoless double beta decay, lepton flavor violating decays such as μ → eγ and leptogenesis are discussed. The features which allow to distinguish the scenarios are identified.


Sign in / Sign up

Export Citation Format

Share Document