germanium detector
Recently Published Documents


TOTAL DOCUMENTS

476
(FIVE YEARS 79)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 2155 (1) ◽  
pp. 012020
Author(s):  
I V Prozorova

Abstract A standard procedure for characterizing the high-purity germanium detector (HPGe), manufactured by Canberra Industries Inc [1], is performed directly by the company using patented methods. However, the procedure is usually expensive and must be repeated because the characteristics of the HPGe crystal change over time. In this work, the principles of a technique are developed for use in obtaining and optimizing the detector characteristics based on a cost-effective procedure in a standard research laboratory. The technique requires that the detector geometric parameters are determined with maximum accuracy by the Monte Carlo method [2] in parallel with the optimization based on evolutionary algorithms. The development of this approach facilitates modeling of the HPGe detector as a standardized procedure. The results will be also beneficial in the development of gamma spectrometers and/or their calibrations before routine measurements.


2021 ◽  
Author(s):  
Hamid Ramazanian ◽  
◽  
Tareq Alrefae ◽  

Radioactivity in egg was investigated. The targeted radionuclides were the long-lived gamma emitters 228Ra, 226Ra, and 40K. Measurements were carried out using a high purity germanium detector. The calculated annual effective dose due to egg consumption was 79 μSv yr-1, which forms 1/4 of the 290 μSv yr-1 world average ingestion exposure from natural sources. Hence, no radiological hazards exist from egg consumption due to the presence of the investigated radionuclides.


2021 ◽  
Author(s):  
Junhua Luo ◽  
Li Jiang ◽  
junchen liang ◽  
Fei Tuo ◽  
Long He ◽  
...  

Abstract The reaction cross-sections of 124Xe(n, 2n)123Xe, 126Xe(n, 2n)125Xe, 128Xe(n, 2n)127Xe, 130Xe(n, 2n)129mXe, 132Xe(n, 2n)131mXe, 130Xe(n, p)130I, 131Xe(n, p)131I, and 132Xe(n, p)132I were measured at the 13.5, 13.8, 14.1, 14.4, and 14.8 MeV neutron energies. The monoenergetic neutrons were generated through the 3H(d,n)4He reaction at the China Academy of Engineering Physics using the K-400 Neutron Generator with a solid 3H-Ti target. A high-purity germanium detector was used to measure the activities of the product. The reactions 93Nb(n, 2n)92mNb and 27Al(n, α)24Na served for neutron flux calibration. The cross sections of the (n,2n) and (n,p) reactions of the xenon isotopes were acquired within the 13–15 MeV neutron energy range. These cross-sections were then compared with the IAEA-exchange format (EXFOR) database-derived experimental data together with the evaluation results of the CENDL-3, ENDF/B-VIII.0, JENDL-4.0, RUSFOND, and JEFF-3.3 data libraries as well as the theoretical excitation function obtained using the TALYS-1.95 code. The cross-sections of the reactions (except for the 124Xe(n, 2n)123Xe and 132Xe(n, p)132I) at 13.5, 13.8, and 14.1 MeV are reported for the first time in this work. The present results are helpful to provide better cross-section constraints for these reactions in the 13–15 MeV region, thus improving the quality of the corresponding database. Meanwhile, these data can also be used for the verification of relevant nuclear reaction model parameters.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012011
Author(s):  
B. H. Essa ◽  
M.A. Siyah ◽  
A.H. Al-Mashhadani

Abstract This study is investigating the radioactivity in soil samples at the Al-Nahrawan site. The radiation survey appears there are 3000 square meters area are contaminated with DU in AL-Nahrawan site identified using Geiger–Müller (GM) for radiation survey and gamma spectrometry for 52 soil samples analysis taken from AL-Nahrawan site at different depths (0-70) cm and different locations. The results of gamma analysis using high-purity germanium show that the ratio between 235U/238U is less than 0.00720 (neutral ratio), and it has different values from 0.002-0.00588, and the average value of radioactive nuclides concentration for (238U, 235U and 40K) are (76019.61, 259.55 and 147.5) Bq/kg respectively, these values are higher than the (BG) radioactive concentration levels in Iraq for (238U and 235U) isotopes, and the analysis of 40K concentration appeared in the acceptable limits. The health effects of depleted uranium in the human body it is exposed to many health troubles through the entry of uranium oxide particles.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7629
Author(s):  
Muhammad Ikmal Ahmad ◽  
Mohd Hafizi Ab. Rahim ◽  
Rosdiadee Nordin ◽  
Faizal Mohamed ◽  
Asma’ Abu-Samah ◽  
...  

As nuclear technology evolves, and continues to be used in various fields since its discovery less than a century ago, radiation safety has become a major concern to humans and the environment. Radiation monitoring plays a significant role in preventive radiological nuclear detection in nuclear facilities, hospitals, or in any activities associated with radioactive materials by acting as a tool to measure the risk of being exposed to radiation while reaping its benefit. Apart from in occupational settings, radiation monitoring is required in emergency responses to radiation incidents as well as outdoor radiation zones. Several radiation sensors have been developed, ranging from as simple as a Geiger-Muller counter to bulkier radiation systems such as the High Purity Germanium detector, with different functionality for use in different settings, but the inability to provide real-time data makes radiation monitoring activities less effective. The deployment of manned vehicles equipped with these radiation sensors reduces the scope of radiation monitoring operations significantly, but the safety of radiation monitoring operators is still compromised. Recently, the Internet of Things (IoT) technology has been introduced to the world and offered solutions to these limitations. This review elucidates a systematic understanding of the fundamental usage of the Internet of Drones for radiation monitoring purposes. The extension of essential functional blocks in IoT can be expanded across radiation monitoring industries, presenting several emerging research opportunities and challenges. This article offers a comprehensive review of the evolutionary application of IoT technology in nuclear and radiation monitoring. Finally, the security of the nuclear industry is discussed.


Author(s):  
Ana Milena Velásquez ◽  
Fernando Mosos ◽  
Giovanni Vela

This study develops a modification to the spectra decomposition method for sodium iodide scintillation equipment, including correcting the natural background counts for the activity concentration calculation. A comparison of the results obtained between two sodium iodide detectors of 2 X 2 in and 3 x 3 in versus a hyper-pure germanium detector of 50 % relative efficiency is performed for soil, sediment, and water samples. It is found that background correction significantly improves activity concentration results in higher energy regions. The concentration values determined by the different spectrometric systems for the samples analyzed do not show significant differences, which supports the results obtained with the proposed calculation method. The uncertainty associated with the measurement and detection limits for the NaI (Tl) detectors is higher than those obtained with the GeHp detector due to the operation of the two technologies and the presence of interferences in the regions of interest. The study carried out in this work establishes an analytical milestone. The methodological model proposed makes it possible to quantify, with reliable results, low concentration levels of NORM materials and even 131I using sodium iodide detectors, among other analytical applications of general interest.


Author(s):  
Frederik Wauters ◽  
Andreas Knecht

The project is conducting a series of muonic X-ray measurements in medium- and high-Z nuclei at PSI, utilizing a high-purity germanium detector array, in-beam muon detectors, and a modern digital data-acquisition system. A novel hydrogen target for muon transfer was developed, enabling measurements with as little as a few micrograms of target material. First measurements with radioactive Cm and Ra targets were conducted, aimed at determining their nuclear charge radii. These serve as important input for upcoming atomic parity violation experiments. The apparatus is also used to perform a feasibility study of an atomic parity violation experiment with the 2s-1s2s−1s muonic X-ray transition. In addition, the setup has been made available for a wider range of nuclear, particle, and solid-state physics measurements.


Sign in / Sign up

Export Citation Format

Share Document