scholarly journals Kantowski-Sachs Einstein-aether scalar field cosmological models: the sequel

2020 ◽  
Vol 2020 (08) ◽  
pp. 021-021 ◽  
Author(s):  
S. Mohandas ◽  
R.J. van den Hoogen ◽  
D. Winters ◽  
M. Dala
2007 ◽  
Vol 16 (10) ◽  
pp. 1683-1704 ◽  
Author(s):  
FRANCESCO CANNATA ◽  
ALEXANDER Y. KAMENSHCHIK

We discuss the phenomenon of the smooth dynamical gravity induced crossing of the phantom divide line in a framework of simple cosmological models where it appears to occur rather naturally, provided the potential of the unique scalar field has some kind of cusp. The behavior of cosmological trajectories in the vicinity of the cusp is studied in some detail and a simple mechanical analogy is presented. The phenomenon of certain complementarity between the smoothness of the space–time geometry and matter equations of motion is elucidated. We introduce a network of cosmological histories and qualitatively describe some of its properties.


1999 ◽  
Vol 14 (07) ◽  
pp. 539-547 ◽  
Author(s):  
FERNANDO C. LOMBARDO ◽  
MARIO A. CASTAGNINO ◽  
LUCA BOMBELLI

We analyze the relationship between classical chaos and particle creation in Robertson–Walker cosmological models with gravity coupled with a scalar field. Within our class of models chaos and particle production are seen to arise in the same cases. Particle production is viewed as the seed of decoherence, which enables the quantum to classical transition and ensures that the correspondence between the quantum and classically chaotic models will be valid.


2014 ◽  
Vol 23 (07) ◽  
pp. 1450063 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
M. K. Mak

Gravitationally coupled scalar fields ϕ, distinguished by the choice of an effective self-interaction potential V(ϕ), simulating a temporarily nonvanishing cosmological term, can generate both inflation and late time acceleration. In scalar field cosmological models the evolution of the Hubble function is determined, in terms of the interaction potential, by a Riccati type equation. In the present work, we investigate scalar field cosmological models that can be obtained as solutions of the Riccati evolution equation for the Hubble function. Four exact integrability cases of the field equations are presented, representing classes of general solutions of the Riccati evolution equation. The solutions correspond to cosmological models in which the Hubble function is proportional to the scalar field potential plus a linearly decreasing function of time, models with the time variation of the scalar field potential proportional to the potential minus its square, models in which the potential is the sum of an arbitrary function and the square of the function integral, and models in which the potential is the sum of an arbitrary function and the derivative of its square root, respectively. The cosmological properties of all models are investigated in detail, and it is shown that they can describe the inflationary or the late accelerating phase in the evolution of the universe.


Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
M. K. Mak

Sign in / Sign up

Export Citation Format

Share Document