Applications to cosmological models of a complex scalar field coupled to aU(1) vector gauge field

2004 ◽  
Vol 2004 (10) ◽  
pp. 009-009 ◽  
Author(s):  
Daniele S M Alves ◽  
Gilberto M Kremer
2003 ◽  
Vol 18 (14) ◽  
pp. 955-965 ◽  
Author(s):  
VLADIMIR DZHUNUSHALIEV ◽  
DOUGLAS SINGLETON

The dual superconductor picture of the QCD vacuum is thought to describe the various aspects of the strong interaction including confinement. Ordinary superconductivity is described by the Ginzburg–Landau (GL) equation. In the present work we show that it is possible to arrive at a GL-like equation from pure SU(2) gauge theory. This is accomplished by using Abelian projection to split the SU(2) gauge fields into an Abelian subgroup and its coset. The two gauge field components of the coset part act as the effective, complex, scalar field of the GL equation. The Abelian part of the SU(2) gauge field is then analogous to the electromagnetic potential in the GL equation. An important feature of the dual superconducting model is for the GL Lagrangian to have a spontaneous symmetry breaking potential, and the existence of Nielsen–Olesen flux tube solutions. Both of these require a tachyonic mass for the effective scalar field. Such a tachyonic mass term is obtained from the condensation of ghost fields.


1992 ◽  
Vol 169 (4) ◽  
pp. 308-312 ◽  
Author(s):  
I.M. Khalatnikov ◽  
A. Mezhlumian

2011 ◽  
Author(s):  
F. Briscese ◽  
Luis Arturo Ureña-López ◽  
Hugo Aurelio Morales-Técotl ◽  
Román Linares-Romero ◽  
Elí Santos-Rodríguez ◽  
...  

2020 ◽  
Vol 29 (11) ◽  
pp. 2041002
Author(s):  
Visakan Balakumar ◽  
Elizabeth Winstanley

The Hadamard parametrix is a representation of the short-distance singularity structure of the Feynman Green’s function for a quantum field on a curved spacetime background. Subtracting these divergent terms regularizes the Feynman Green’s function and enables the computation of renormalized expectation values of observables. We study the Hadamard parametrix for a charged, massive, complex scalar field in five spacetime dimensions. Even in Minkowski spacetime, it is not possible to write the Feynman Green’s function for a charged scalar field exactly in closed form. We, therefore, present covariant Taylor series expansions for the biscalars arising in the Hadamard parametrix. On a general spacetime background, we explicitly state the expansion coefficients up to the order required for the computation of the renormalized scalar field current. These coefficients become increasingly lengthy as the order of the expansion increases, so we give the higher-order terms required for the calculation of the renormalized stress-energy tensor in Minkowski spacetime only.


Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter provides constructions of Lagrangians for various field models and discusses the basic properties of these models. Concrete examples of field models are constructed, including real and complex scalar field models, the sigma model, spinor field models and models of massless and massive free vector fields. In addition, the chapter discusses various interactions between fields, including the interactions of scalars and spinors with the electromagnetic field. A detailed discussion of the Yang-Mills field is given as well.


Sign in / Sign up

Export Citation Format

Share Document