scholarly journals Transit cosmological models coupled with zero-mass scalar field with high redshift in higher derivative theory

New Astronomy ◽  
2021 ◽  
pp. 101587
Author(s):  
Archana Dixit ◽  
Dinesh Chandra Maurya ◽  
Anirudh Pradhan
2011 ◽  
Vol 334 (1) ◽  
pp. 187-191 ◽  
Author(s):  
N. Ibotombi Singh ◽  
S. Surendra Singh ◽  
S. Romaleima Devi

Author(s):  
Andre Maeder ◽  
Vesselin G Gueorguiev

Abstract Maxwell equations and the equations of General Relativity are scale invariant in empty space. The presence of charge or currents in electromagnetism or the presence of matter in cosmology are preventing scale invariance. The question arises on how much matter within the horizon is necessary to kill scale invariance. The scale invariant field equation, first written by Dirac in 1973 and then revisited by Canuto et al. in 1977, provides the starting point to address this question. The resulting cosmological models show that, as soon as matter is present, the effects of scale invariance rapidly decline from ϱ = 0 to ϱc, and are forbidden for densities above ϱc. The absence of scale invariance in this case is consistent with considerations about causal connection. Below ϱc, scale invariance appears as an open possibility, which also depends on the occurrence of in the scale invariant context. In the present approach, we identify the scalar field of the empty space in the Scale Invariant Vacuum (SIV) context to the scalar field ϕ in the energy density $\varrho = \frac{1}{2} \dot{\varphi }^2 + V(\varphi )$ of the vacuum at inflation. This leads to some constraints on the potential. This identification also solves the so-called “cosmological constant problem”. In the framework of scale invariance, an inflation with a large number of e-foldings is also predicted. We conclude that scale invariance for models with densities below ϱc is an open possibility; the final answer may come from high redshift observations, where differences from the ΛCDM models appear.


2006 ◽  
Vol 15 (02) ◽  
pp. 189-198 ◽  
Author(s):  
P. S. DEBNATH ◽  
B. C. PAUL

We consider the evolution of a flat Friedmann–Roberstson–Walker Universe in a higher derivative theory, including αR2terms for the Einstein–Hilbert action in the presence of variable gravitational and cosmological constants. We study the evolution of the gravitational and cosmological constants in the radiation and matter domination era of the universe. We present new cosmological solutions which are physically interesting for model building.


Author(s):  
Partha Sarathi Debnath ◽  
Bikash Chandra Paul

In this paper, evolution of a Friedmann–Robertson–Walker universe is studied in a higher derivative theory of gravity. The relativistic solutions admitting hybrid expansion law of the universe are explored here. Hybrid expansion law is a general form of scale factor from which one can recover both the power-law expansion and exponential expansion as a special case. The hybrid expansion law is interesting as it addresses the early deceleration phase and presents accelerating phase satisfactorily. It is found that an inflationary scenario with hybrid expansion law is permitted in the [Formula: see text] gravity fairly well. We consider universe filled with cosmic fluid that describes by an equation of state (EoS) parameter which varies with time. Consequently, we analyze the time variation of energy density parameter, cosmic pressure, equation of state parameter, deceleration parameter and jerk parameter in the cosmological model. The constraints of the model parameters imposed by the cosmological observational data set are determined. The present value of the deceleration parameter [Formula: see text], EoS parameter and the epoch at which the transition of decelerated phase to accelerated phase are estimated. In the higher derivative theory, we obtain some new and interesting cosmological solutions relevant for building cosmological models.


2020 ◽  
Vol 2020 (08) ◽  
pp. 021-021 ◽  
Author(s):  
S. Mohandas ◽  
R.J. van den Hoogen ◽  
D. Winters ◽  
M. Dala

2019 ◽  
Vol 34 (38) ◽  
pp. 2050057
Author(s):  
Hai Lin ◽  
Gaurav Narain

In this paper, we look for AdS solutions to generalized gravity theories in the bulk in various spacetime dimensions. The bulk gravity action includes the action of a non-minimally coupled scalar field with gravity, and a higher-derivative action of gravity. The usual Einstein–Hilbert gravity is induced when the scalar acquires a nonzero vacuum expectation value. The equation of motion in the bulk shows scenarios where AdS geometry emerges on-shell. We further obtain the action of the fluctuation fields on the background at quadratic and cubic orders.


Sign in / Sign up

Export Citation Format

Share Document