Method of accurately calculating mean field operator in multi-configuration time-dependent Hartree—Fock frame

2013 ◽  
Vol 22 (9) ◽  
pp. 093202 ◽  
Author(s):  
Wen-Liang Li ◽  
Ji Zhang ◽  
Hong-Bin Yao
2007 ◽  
Vol 16 (02) ◽  
pp. 249-262 ◽  
Author(s):  
X. VIÑAS ◽  
V. I. TSELYAEV ◽  
V. B. SOUBBOTIN ◽  
S. KREWALD

We propose first a generalization of the Density Functional Theory leading to single-particle equations of motion with a quasilocal mean-field operator containing a position-dependent effective mass and a spin-orbit potential. Ground-state properties of doubly magic nuclei are obtained within this framework using the Gogny D1S force and compared with the exact Hartree-Fock values. Next, extend the Density Functional Theory to include pairing correlations without formal violation of the particle-number condition. This theory, which is nonlocal, is simplified by a suitable quasilocal reduction. Some calculations to show the ability of this theory are presented.


2021 ◽  
Vol 252 ◽  
pp. 05001
Author(s):  
Aldo Bonasera

A Time Dependent Hartree-Fock (TDHF) based classical model is applied to sub-barrier fusion reactions using the Feynman Path Integral Method (FPIM). The fusion cross-sections and modified astrophysical S*-factors are calculated for the 12C+12C reactions and compared to direct and indirect experimental results. Different channels cross-sections are estimated from the statistical decay of the compound nucleus. A good agreement with the direct data is found. We suggest a complementary observable given by the (imaginary) action A easily derived from theory and experiments. When properly normalized by the action in the Gamow limit it has an upper value of 1 at zero beam energies. It becomes negative at the Coulomb barrier which is Vcb=5.05±0.05MeV from direct data and Vcb=5.5MeV from model calculations.


2003 ◽  
Vol 82 (6) ◽  
pp. 665-683 ◽  
Author(s):  
Claude Bardos ◽  
François Golse ◽  
Alex D. Gottlieb ◽  
Norbert J. Mauser

2008 ◽  
Vol 17 (01) ◽  
pp. 31-40 ◽  
Author(s):  
CÉDRIC SIMENEL ◽  
BENOÎT AVEZ

A microscopic mean-field description of heavy ions fusion is performed in the framework of the Time-Dependent Hartree-Fock (TDHF) theory using a Skyrme interaction with the SLy 4d parametrization. A good agreement with experiments is obtained on the position of the fusion barriers for various total masses, mass asymmetries and deformations. The excitation function of the 16 O +208 Pb is overestimated by about 16% above the barrier. The restriction to an independent particles state in the mean-field dynamics prevents the description of sub-barrier fusion. Effect of transfer on fusion is discussed.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2010 ◽  
Vol 8 (6) ◽  
pp. 1192-1202 ◽  
Author(s):  
Marek Drozd ◽  
Mariusz Marchewka

AbstractThe bis(melaminium) sulphate dihydrate, 2,4,6-triamine-1,3,5-triazin-1,3-ium tartrate monohydrate, 2,4,6-triamine-1,3,5-triazin-1-ium hydrogenphthalate, 2,4,6-triamine-1,3,5-triazin-1-ium acetate acetic acid solvate monohydrate, 2,4,6-triamine-1,3,5-triazin-1-ium bis(selenate) trihydrate, melaminium diperchlorate hydrate, melaminium bis(trichloroacetate) monohydrate and melaminium bis(4-hydroxybenzenesulphonate) dihydrate were discovered recently as perspective materials for nonlinear optical applications. On the basis of X-ray structures for eight melaminium compounds the time dependent Hartree Fock (TDHF) method was used for calculation of the polarizability, and first and second hyperpolarizability. Detailed directional studies of calculated hyperpolarizability for all investigated melaminium compounds are shown. The theoretical results are compared with experimental values of β.


Sign in / Sign up

Export Citation Format

Share Document