Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation

2014 ◽  
Vol 23 (8) ◽  
pp. 088201
Author(s):  
Zhi-Wen Zhu ◽  
Qing-Xin Zhang ◽  
Jia Xu
2020 ◽  
Vol 64 (1-4) ◽  
pp. 1547-1554
Author(s):  
Xiao-Huan Li ◽  
Fang Liu ◽  
Jia Xu ◽  
Zhi-Wen Zhu

In this paper, the nonlinear dynamic characteristics and control of a Galfenol-shape memory alloy (SMA) composite plate under stochastic excitation are studied. New nonlinear differential terms are applied in the constitutive modeling of Galfenol alloy and SMA, and the nonlinear dynamic model of the composite system is developed. The drift coefficient and the diffusion coefficient are calculated to obtain the steady-state probability density function of the system, and finally the optimal control strategy is proposed to improve the effects of vibration reduction. Numerical simulation and experiments results show that the system has abundant nonlinear dynamic characteristics, including stochastic Hopf bifurcation and limit cycle bifurcation. The stochastic optimal control strategy can improve the effects of vibration reduction efficiently. These results are helpful for the application of Galfenol-SMA composite structures.


2013 ◽  
Vol 284-287 ◽  
pp. 173-177
Author(s):  
Zhi Wen Zhu ◽  
Wei Guo ◽  
Jia Xu

In this paper, nonlinear dynamic characteristics of giant magnetostructive nanofilm-shape memory alloy (SMA) composite beam in axial stochastic excitation were studied. Von del Pol nonlinear difference item was introduced to interpret the hysteresis phenomenon of the strain-stress curve of SMA, and the hysteretic nonlinear dynamic model of giant magnetostructive nanofilm-SMA composite beam in axial stochastic excitation was developed. The steady-state probability density function and the joint probability density function of the system were obtained in quasi-nonintegrable Hamiltonian system theory. The result of simulation shows that the stability of the trivial solution varies with bifurcation parameter, and stochastic Hopf bifurcation appears in the process. The result is helpful to stochastic bifurcation control to giant magnetostructive nanofilm-SMA composite beam.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Zhi-Wen Zhu ◽  
Xin-Miao Li ◽  
Jia Xu

A kind of high-aspect-ratio shape memory alloy (SMA) composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.


Sign in / Sign up

Export Citation Format

Share Document