flexible support
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 59)

H-INDEX

14
(FIVE YEARS 3)

Energy ◽  
2022 ◽  
pp. 123079
Author(s):  
Shuaijia He ◽  
Hongjun Gao ◽  
Zhe Chen ◽  
Junyong Liu ◽  
Liang Zhao ◽  
...  

2021 ◽  
Vol 2113 (1) ◽  
pp. 012069
Author(s):  
Jiabin Pan ◽  
Yanan Zhang ◽  
Zhongtao Fu ◽  
Linyong Shen

Abstract Large-aperture laser transmission unit (LLTU) is a device that focuses the laser beam to the center of the target, which are often designed as compliant mechanisms to achieve micro displacement adjustment. In the traditional mechanisms, they are designed as integrated micromanipulation systems, and driven by piezoelectric ceramics. However, most of these researches only focuses on motion accuracy, due to the lack of consideration of large load problems, the application is greatly limited. To this end, a flexible support module (FSM), as well as its stiffness model, was presented in this paper. Combined with finite element method (FEM) of FSM, structure size optimization was also completed, successfully solved the problems of stress concentration and load of FSM in engineering application. Moreover, a dual vision-based measurement method was introduced, to verify the stiffness model and analyze the repetitive error of FSM. From this result, the prototype enabled 5 mm and 0.007 rad of working area with average error of 0.3192 mm and -0.0036 rad. The repeatable error is within 7%, and will decreased to 4% with internal stress released in 5~15min.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6557
Author(s):  
Jerzy Jackowski ◽  
Marcin Żmuda ◽  
Marcin Wieczorek ◽  
Andrzej Zuska

The non-pneumatic tire (NPT) is a type of wheel whichdevelopment is related to the beginning of automotive development. The non-pneumatic tire (NPT) is a type of tire that does not contain compressed gases or fluid to provide directional control and traction. Nowadays, this type of wheel is more and more often used in special purpose vehicles, e.g., in military vehicles and working machines. The main feature of the non-pneumatic tire is a flexible support structure (including the part of the wheel between the tread and the rim). This paper presents the results of research aimed at determining the influence of the geometry of the NPT’s (intended for All-Terrain Vehicle - ATV / Utility Task Vehicle - UTV) load-bearing structure on its quasi-static directional characteristics. The experimental tests included the determination of the radial stiffness of research objects on a non-deformable flat surface and on a single obstacle, as well as the determination of the degree of deformation for the elastic structure and belt. The significant influence of the elastic structure’s shape and the elastomer, as the material forming the NPT, on its radial stiffness was revealed.


2021 ◽  
Vol 37 (3) ◽  
pp. 28-34
Author(s):  
V. Yu. Dovhal

Purpose of work. Determine the conditions of the side rocks stability in a coal massif with different ways of support coal-rock stratum to ensure safe working conditions for miners in the excavation areas of a coal mine with steep coal seams. To achieve this goal, laboratory studies were carried out on models of optical and equivalent materials. The modeling of the stability of side rocks in a coal-rock massif was carried out with the methods of support roadways with vertical timber setsand wooden crib supports: 4-point chock.On models made of optical materials in the analysis of the static field of the distribution of shear stresses in side rocks, the regularity of the change in hazardous manifestations of rock pressure, depending on the deformability of support structures, was recorded. On equivalent models of support structures, the deformation characteristics of experimental samples were determined and their effect on the integrity of the roof under the action of static loads was established. When using rigid support structures in the form of vertical timber sets made of wooden racks to protect sliding drifts, there is a deterioration in the stability of side rocks and destruction of the roof. When using flexible support structures in the form of wooden crib supports: 4-point chock, a smooth deflection of the roof and its integrity are observed. A decrease in the size of the stress concentration zone in the model of a coal-rock massif with workings after the compaction of flexible support structures located above the haul roadway, due to a change in their rigidity, when as a result of the convergence of side rocks, a smooth deflection is provided and the movement of the roof is limited. To ensure the stability of side rocks and development workings, as well as reduce the level of injuries of miners from landslides and collapses in the excavation areas of coal mines that develop steep seams, it is advisable to use flexible support structures, when using which, a smooth deflection of side rocks and their integrity in the mined-out area is ensured coal massif.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5919
Author(s):  
Mingqiang Zhang ◽  
Yaobin Li ◽  
Yalin Ding ◽  
Jianjun Sun ◽  
Jing Li

In order to reduce the influence of the optical window on the image quality of a hypersonic visible light optical remote sensor, we propose a method of adding a double-layer semicircular honeycomb core microstructure with flexible support of a high temperature elastic alloy between a window glass and a frame to reduce the influence of complex thermal stress on the surface accuracy of the optical window. An equivalent model of a semicircular honeycomb structure was established, the elastic parameters of the semicircular honeycomb sandwich microstructure were derived by an analytical method, and a numerical verification and finite element simulation were carried out. The results show that the equivalent model is in good agreement with the detailed model. The optical-mechanical-thermal integrated simulation analysis of the optical window assembly with flexible supporting microstructure proves that the semicircular honeycomb sandwich flexible supporting structure has a positive effect on stress attenuation of the window glass and ensures the wave aberration accuracy of the transmitted optical path difference of the optical window (PV < 0.665 λ, RMS < 0.156 λ, λ = 632.8 nm). Combined with the actual optical system, the optical performance of the window assembly under the flexible support structure is verified. The simulation results show that the spatial frequency of the modulation transfer function (MTF) of the optical system after focusing is not less than 0.58 in the range of 0–63 cycle/mm and the relative decline of MTF is not more than 0.01, which meet the imaging requirements of a remote sensor. The study results show that the proposed metal-based double-layer semicircular honeycomb sandwich flexible support microstructure ensures the imaging quality of the optical window under ultra-high temperature conditions.


2021 ◽  
Vol 11 (17) ◽  
pp. 8124
Author(s):  
Xunxun Ma ◽  
Shujia Li ◽  
Wangliang Tian ◽  
Xiqiang Qu ◽  
Shengze Wang ◽  
...  

To satisfy the requirements of high speed, large capacity and constant winding, a textile winding rotor needs to work in a wide rotation speed range and frequently pass through critical speed points. Thus, the winding rotor adopts the flexible long shaft coupling structure and flexible support with rubber O-rings. This kind of rotor has a multi-coupling structure and frequency-dependent parameters characteristics, especially representative and universal in the dynamic analysis method of the high-speed rotor. In this paper, an approach was proposed to investigate the dynamic behavior of the winding rotor considering the flexible coupling and frequency-dependent supporting parameters. Firstly, a dynamic model of the winding rotor was established by using a Timoshenko beam element. Its dynamic behaviors were simulated by considering the time-varying rotation speed and the frequency-dependent parameters of flexible support. Secondly, a non-contact measuring device was developed for measuring the vibration displacement of the winding rotor in three different speed-up times. Finally, based on simulation and measurement data, how flexible support parameters and the speed-up time affect the winding rotor passing through the critical speed point of the rotor smoothly is revealed. The methods and findings reported here can be used for theoretical and experimental vibration analysis of other types of high-speed flexible rotors.


2021 ◽  
Vol 11 (17) ◽  
pp. 8071
Author(s):  
Zujin Jin ◽  
Gang Cheng ◽  
Yusong Pang ◽  
Shichang Xu ◽  
Dunpeng Yuan

During the processing of an optical mirror, the performance parameters of the bottom support system would affect the surface forming accuracy of the mirror. The traditional bottom support system has a large unadjustable support stiffness, which increases the difficulty of unloading the impact force generated by the grinding disc. In response to this scenario, a flexible support system (FSS) consisting of 36 support cylinders with beryllium bronze reeds (BBRs) and rolling diaphragms (RDs) as key components is designed. It is necessary to analyze the key components of the support cylinder to reduce its axial movement resistance, ensure a consistent force output of each support point. First, the internal resistance model of a flexible support cylinder is established, and the main factors of internal resistance are then analyzed. Thereafter, the multi-objective structural parameters of the BBR and RD are simulated in ANSYS using the control variable method. The optimal structural parameters of BBR and RD are determined by simulation. Finally, experiments are performed on the RD ultimate pressure, internal resistance of the support cylinder, and consistency of the force output of the FSS. The experimental results show that the support cylinder with the optimized design has good force output consistency, which provides a theoretical basis for the application of FSS in optical mirror processing.


2021 ◽  
Author(s):  
Jaya T. Varkey

Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. But their stabilization towards agglomeration is a serious concern. Synthesized silver nanoparticles can be dispersed in polymeric hydrogel for stabilization and can be efficiently used in heterogeneous catalysis. Polystyrene crosslinked with 1, 6-hexanediol diacrylate can be suitably functionalized for catalytic activities. The nature of the support has a profound influence on the reactivity of the polymeric resin. A flexible support with optimum hydrophilic and hydrophobic balance enhanced the reactivity of the supporting system. Using this supported AgNPs catalytic reduction of Para-nitro phenol can be easily accomplished comparing to conventional method.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Sign in / Sign up

Export Citation Format

Share Document