dynamic characteristics analysis
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 75)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 746
Author(s):  
Qingyu Zhu ◽  
Qingkai Han ◽  
Xiaodong Yang ◽  
Junzhe Lin

This paper presents the dynamic characteristics analysis of a rigid body system with spatial multi-point elastic supports, as well as the sensitivity analysis of support parameters. A rigid object is characterized by six degrees-of-freedom (DOFs) motions and considering the spatial location vector decomposition of elastic supports, a rigid body system dynamic model with spatial multi-point elastic supports is derived via the Lagrangian energy method. The system modal frequencies are calculated, and to be verified by finite element modal analysis results. Next, based on the above-mentioned model, system modal frequencies are obtained under different support locations, where the support stiffness components are different. Interpolate the stiffness components corresponding to each support location, calculate system modal frequencies, and the response surface model (RSM) for system modal frequencies is established. Further, based on the RSM modal analysis results, the allowable support location for the system modal insensitive area can be obtained. At last, a lubricating oil-tank system with four supports is taken as an example, and the effects of support spatial locations and stiffness components on the system inherent characteristics are discussed. This present work can provide a basis for the dynamic design of the spatial location and stiffness for this type of installation structures.


2021 ◽  
Vol 2029 (1) ◽  
pp. 012022
Author(s):  
Xiaorui Zong ◽  
Wenhui Yu ◽  
Guangchao Rui ◽  
Haijie Jia ◽  
Xiang Zhang

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1501
Author(s):  
Liping Zeng ◽  
Yukun Xu ◽  
Jie Huang ◽  
Liquan Song

Multiple sets of spring, spring seat structures are uniformly arranged in circumferential short spring dual mass flywheel (DMF), which generally have a symmetrical structure. The internal springs and spring seats are constrained by the shape of the primary flywheel and the secondary flywheel. At different rotational speeds, the springs and spring seats have different centrifugal forces. To study the dynamic characteristics of the DMF including torque and stiffness with considering the influence of centrifugal force and friction, the discrete method is used to analyze the mechanical actions of the transmission parts in DMF. The torque action between the spring seat and the secondary flywheel is deduced. The dynamic characteristics of the DMF are obtained through analyzing and calculating. Due to the symmetry of the structure, the torque transmitted and the stiffness of the DMF also have specific symmetrical characteristics. Namely, at two relative rotational angles of the same magnitude and opposite direction, the magnitude of the transmitted torque is the same, the direction is opposite. The magnitude and direction of stiffness are the same. The influence of speed, friction coefficient, spring mass, and spring seat mass on the torque and stiffness characteristics are analyzed. Finally, the theoretical analysis is proved to be valid by the torque characteristics test of DMF.


Sign in / Sign up

Export Citation Format

Share Document