Research progress of low-dimensional metal halide perovskites for lasing applications

2018 ◽  
Vol 27 (11) ◽  
pp. 114209 ◽  
Author(s):  
Zhen Liu ◽  
Chun Li ◽  
Qiu-Yu Shang ◽  
Li-Yun Zhao ◽  
Yang-Guang Zhong ◽  
...  
2019 ◽  
Vol 137 ◽  
pp. 38-65 ◽  
Author(s):  
Chenkun Zhou ◽  
Haoran Lin ◽  
Qingquan He ◽  
Liangjin Xu ◽  
Michael Worku ◽  
...  

2017 ◽  
Vol 2 (4) ◽  
pp. 889-896 ◽  
Author(s):  
Makhsud I. Saidaminov ◽  
Omar F. Mohammed ◽  
Osman M. Bakr

Author(s):  
Eric Amerling ◽  
Kameron Hansen ◽  
Luisa Whittaker-Brooks

As research on both bulk and low dimensional metal halide perovskites (MHPs) continues to grow, the tools necessary to gain insights into their exotic and highly convoluted optoelectronic features must...


2021 ◽  
pp. 160727
Author(s):  
Xiaodong Peng ◽  
Cheng Yan ◽  
Fengjun Chun ◽  
Wen Li ◽  
Xuehai Fu ◽  
...  

2020 ◽  
Author(s):  
Benny Febriansyah ◽  
Yulia Lekina ◽  
Jagjit Kaur ◽  
Thomas J. N. Hooper ◽  
Padinhare Cholakkal Harikesh ◽  
...  

Major strides have been made in the development of materials and devices based around low-dimensional hybrid group 14 metal halide perovskites. Thus far, this work has mostly focused upon compounds containing highly toxic Pb, with the analogous less toxic Sn materials being comparatively poorly evolved. In response, the study herein aims to (i) provide insight into the impact of templating cation upon the structure of 2D tin iodide perovskites, and (ii) examine their potential as light absorbers for photovoltaic (PV) cells. It was discovered through systematic tuning of organic dications, that imidazolium rings are able to induce formation of (110)-oriented materials, including the first examples of “3 × 3” corrugated Sn-I perovskites. This structural outcome is a consequence of a combination of supramolecular interactions of the two endocyclic N-atoms in the imidazolium functionalities with the Sn-I framework and the higher tendency of Sn<sup>2+</sup> ions to stereochemically express their 5s<sup>2</sup> lone pairs relative to the 6s<sup>2</sup> electrons of Pb<sup>2+</sup>. More importantly, the resulting materials feature very short separations between their 2D inorganic layers with iodide–iodide (I···I) contacts as small as 4.174 Å, which is amongst the shortest ever recorded for 2D tin iodide perovskites. The proximate inorganic distances, combined with the polarizable nature of the imidazolium moiety, eases the separation of photogenerated charge within the materials. This is evident from the excitonic activation energies as low as 83(10) meV, measured for ImEA[SnI<sub>4</sub>]. When combined with superior light absorption capabilities relative to their lead congeners, this allowed fabrication of lead-free solar cells with incident photon-to-current and power conversion efficiencies of up to 70 % and 2.26 %, respectively, which are amongst the highest values reported for pure 2D group 14 metal halide perovskites. In fact, these values are superior to the corresponding lead iodide material, which demonstrates that 2D Sn-based materials have significant potential as less toxic alternatives to their Pb counterparts.


2021 ◽  
Vol 33 (11) ◽  
pp. 2004446
Author(s):  
Weiqiang Chen ◽  
Feng Zhang ◽  
Cong Wang ◽  
Mingshuang Jia ◽  
Xinghang Zhao ◽  
...  

2020 ◽  
Vol 31 (15) ◽  
pp. 152002 ◽  
Author(s):  
Jingying Liu ◽  
Keqiang Chen ◽  
Sayed Ali Khan ◽  
Babar Shabbir ◽  
Yupeng Zhang ◽  
...  

2017 ◽  
Vol 44 (7) ◽  
pp. 0703008
Author(s):  
霍成学 Huo Chengxue ◽  
王子明 Wang Ziming ◽  
李晓明 Li Xiaoming ◽  
曾海波 Zeng Haibo

Sign in / Sign up

Export Citation Format

Share Document