scholarly journals Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy

2018 ◽  
Vol 27 (8) ◽  
pp. 087503 ◽  
Author(s):  
Shou-Peng Lyu ◽  
Li Yu ◽  
Jian-Wei Huang ◽  
Cheng-Tian Lin ◽  
Qiang Gao ◽  
...  
2021 ◽  
Author(s):  
Cong Li ◽  
Xianxin Wu ◽  
Hongxiong Liu ◽  
Craig Polley ◽  
Qinda Guo ◽  
...  

Abstract The recently discovered AV3Sb5 (A=K, Rb, Cs) family, possessing V kagome nets, has received considerable attention due to the topological electronic structure and intriguing correlated phenomena, including an exotic charge density wave (CDW) and superconductivity. Detailed electronic structure studies are essential to unravel the characteristics and origin of the CDW as well as its interplay with superconductivity. Here, we present angle-resolved photoemission spectroscopy (ARPES) measurements for CsV3Sb5 at multiple temperatures and photon energies to reveal the nature of the CDW from an electronic structure perspective. We present evidence for a three-dimensional (3D) CDW order. In the process we also pinpoint a surface state attributed to a Cs terminated surface. This state was previously attributed to band folding band due to a CDW along the c direction or a quantum well state from quantum confinement. The CDW expected 2-fold lattice reconstruction along c axis is observed to be a quadrupling of the unit cell, thus for the first time directly demonstrating the 3D nature of the CDW from the electronic structure perspective. Moreover, this 3D CDW configuration originates from two distinct types of distortions in adjacent kagome layers. These present results not only provide key insights into the nature of the unconventional CDW in CsV3Sb5 but also provides an important reference for further studies on the relationship between the CDW and superconductivity.


1994 ◽  
Vol 375 ◽  
Author(s):  
Kevin E. Smith ◽  
Klaus Breuer ◽  
David Goldberg ◽  
Martha Greenblatt ◽  
William McCarroll ◽  
...  

AbstractThe electronic structure of the prototypical quasi-one dimensional (1D) conductor K03MoO3 has been studied using high resolution photoemission spectroscopy. In particular, the electronic structure of defects was investigated in order to understand the mechanism for charge density wave pinning and destruction of the Peierls transition. Defects were found to radically alter the electronic structure close to the Fermi level (EF), thus strongly modifying the structure of the Fermi surface. While a low emission intensity at EF has been interpreted as evidence for a Luttinger liquid ground state in a ID metal, we show that non-stoichiometric surfaces lead to similar effects. The nature of the ground state is discussed in the context of these results.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hailan Luo ◽  
Qiang Gao ◽  
Hongxiong Liu ◽  
Yuhao Gu ◽  
Dingsong Wu ◽  
...  

AbstractThe Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.


Sign in / Sign up

Export Citation Format

Share Document