Electronic Structure
Latest Publications


TOTAL DOCUMENTS

114
(FIVE YEARS 106)

H-INDEX

5
(FIVE YEARS 5)

Published By Iop Publishing

2516-1075

Author(s):  
Lennart Klebl ◽  
Qiaoling Xu ◽  
Ammon Fischer ◽  
Lede Xian ◽  
Martin Claassen ◽  
...  

Abstract We study the electronic structure and correlated phases of twisted bilayers of platinum diselenide using large-scale ab initio simulations combined with the functional renormalization group. PtSe2 is a group-X transition metal dichalcogenide, which hosts emergent flat bands at small twist angles in the twisted bilayer. Remarkably, we find that moiré engineering can be used to tune the strength of Rashba spin-orbit interactions, altering the electronic behavior in a novel manner. We reveal that an effective triangular lattice with a twist-controlled ratio between kinetic and spin-orbit coupling scales can be realized. Even dominant spin-orbit coupling can be accessed in this way and we discuss consequences for the interaction driven phase diagram, which features pronounced exotic superconducting and entangled spin-charge density waves.


Author(s):  
Brian Nguyen ◽  
Devin J. Hernandez ◽  
Emmanuel Victor V. Flores ◽  
Filipp Furche

Abstract A multivariate adiabatic connection (MAC) framework for describing dispersion interactions in a system consisting of non-overlapping monomers is presented. By constraining the density to the physical ground-state density of the supersystem, the MAC enables a rigorous separation of induction and dispersion effects. The exact dispersion energy is obtained from the zero-temperature fluctuation-dissipation theorem and partitioned into increments corresponding to the interaction energy gained when an additional monomer is added to a -monomer system. The total dispersion energy of an -monomer system is independent of any partitioning into subsystems. This statement of dispersion size consistency is shown to be an exact constraint. The resulting additive separability of the dispersion energy results from multiplicative separability of the generalized screening factor defined as the inverse generalized dielectric function. Many-body perturbation theory (MBPT) is found to violate dispersion size-consistency because perturbative approximations to the generalized screening factor are nonseparable; on the other hand, random phase approximation-type methods produce separable generalized screening factors and therefore preserve dispersion size-consistency. This result further explains the previously observed increase in relative errors of MBPT for dispersion interactions as the system size increases. Implications for electronic structure theory and applications to supramolecular materials and condensed matter are discussed.


Author(s):  
Zachary Jordan ◽  
Shahriar N. Khan ◽  
Benjamin A. Jackson ◽  
Evangelos Miliordos

Abstract Density functional theory and ab initio multi-reference calculations are performed to examine the stability and electronic structure of boron complexes that host diffuse electrons in their periphery. Such complexes (solvated electron precursors or SEPs) have been experimentally identified and studied theoretically for several s- and d-block metals. For the first time, we demonstrate that a p-block metalloid element can form a stable SEP when appropriate ligands are chosen. We show that three ammonia and one methyl ligands can displace two of the three boron valence electrons to a peripheral 1s-type orbital. The shell model for these outer electrons is identical to previous SEP systems (1s, 1p, 1d, 2s). Further, we preformed the first examination of a molecular system consisting of two SEPs bridged by a hydrocarbon chain. The electronic structure of these dimers is very similar to that of traditional diatomic molecules forming bonding and anti-bonding σ and π orbitals. Their ground state electronic structure resembles that of two He atoms, and our results indicate that the excitation energies are nearly independent of the chain length for four carbon atoms or longer. These findings pave the way for the development of novel materials similar to expanded metals and electrides.


Author(s):  
Clemens Zeiser ◽  
Adam Jacob Berges ◽  
Tim Rammler ◽  
Frederik Munko ◽  
Alfred Johann Meixner ◽  
...  

Abstract The application potential of singlet fission (SF), describing the spontaneous conversion of an excited singlet into two triplets, underlines the necessity to independently control SF rates, energetics and the optical band gap. Heterofission, whereby the singlet splits into triplets on chemically distinct chromophores, is a promising approach to control the above-mentioned parameters, but its details are not yet fully understood. Here, we investigate the photophysics of blends of two prototypical SF chromophores, tetracene (TET) and rubrene (RUB) using time-resolved photoluminescence spectroscopy and time-correlated single photon counting (TCSPC) to explore the potential for heterofission in combinations of endothermic SF chromophores.


Author(s):  
Carl M. Frostenson ◽  
Erik Jedvik Granhed ◽  
Vivekanand Shukla ◽  
Pär A. T Olsson ◽  
Elsebeth Schröder ◽  
...  

Abstract We present the idea and illustrate potential benefits of having a tool chain of closely related regular, unscreened and screened hybrid exchange-correlation (XC) functionals, all within the consistent formulation of the van der Waals density functional (vdW-DF) method [JPCM 32, 393001 (2020)]. Use of this chain of nonempirical XC functionals allows us to map when the inclusion of truly nonlocal exchange and of truly nonlocal correlation is important. Here we begin the mapping by addressing hard and soft material challenges: magnetic elements, perovskites, and biomolecular problems. We also predict the structure and polarization for a ferroelectric polymer. To facilitate this work and future broader explorations, we present a stress formulation for spin vdW-DF and illustrate the use of a simple stability-modeling scheme. The modeling supplements DFT (with a specific XC functional) by asserting whether the finding of a soft mode (an imaginary-frequency vibrational mode, ubiquitous in perovskites and soft matter) implies an actual DFT-based prediction of a low-temperature transformation.


Author(s):  
Jonathan D Denlinger ◽  
J Kang ◽  
Lenart Dudy ◽  
J W Allen ◽  
Kyoo Kim ◽  
...  

Abstract Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2 have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (E F) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more global k-space context for the presence of such states and their relation to the bulk Fermi surface topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence, f-resonant photoemission, Si 2p core-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of the E F-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk Fermi surface topology is critically compared to density functional theory and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ, Z and X points, incommensurate 0.6a* nested Fermi-edge states located along Z-N-Z are found to be distinctly different from the density functional theory Fermi surface prediction. The temperature evolution of these states above THO, combined with a more detailed theoretical investigation of this region, suggests a key role of the N-point in the hidden order transition.


Author(s):  
Jannis Krumland ◽  
Caterina Cocchi

Abstract Hybridization effects play a crucial role in determining the electronic properties of hybrid inorganic/organic interfaces. To gain insight into these important interactions, we perform a first-principles study based on hybrid density-functional theory including spin-orbit coupling, focusing on eight representative systems formed by two carbon-conjugated molecules-pyrene and perylene-physisorbed on the transition-metal dichalcogenide monolayers (TMDCs) MoS2, MoSe2 WS2, and WSe2. By means of band unfolding techniques, we analyze the band structures of the considered materials, identifying the contributions of the individual constituents as well as the signatures of their hybridization. Based on symmetry and energetic arguments, we derive general conditions for electronic hybridization between conjugated molecules and underlying TMDCs even when the former do not lie planar on the latter, thus providing the key to predict how their mutual arrangement affect their electronic interactions.


Author(s):  
Dario Massa ◽  
Alberto Ambrosetti ◽  
Pier Luigi Silvestrelli

Abstract By introducing a suitable range-separation of the Coulomb coupling in analogy to [A. Ambrosetti et al. JCP 140, 18A508 (2014)], here we extend the Many-Body Dispersion (MBD) approach to include beyond-dipole van der Waals interactions at a full many-body level, in combination with semi-local density functional theory. A reciprocal-space implementation is further introduced in order to efficiently treat periodic systems. Consistent reliability is found frommolecular dimers to large supramolecular complexes and two-dimensional systems. The large weight of both many-body effects and multipolar terms illustrates how a correct description of vdW forces in large-scale systems requires full account of both contributions, beyond standard pairwise dipolar approaches.


Author(s):  
Erum Gull Naz ◽  
Manikandan Paranjothy

Abstract Thiophene is an organo-sulfur aromatic molecule present in fossil fuels and alternate fuels such as shale oils and contributes to air pollution via fuel burning. Hence, it is essential to remove thiophene and its derivatives during the refining process. In this regard, experimental and electronic structure theory studies investigating the thermal decomposition of thiophene have been reported in the literature. In the present work, high temperature thermal decomposition of thiophene was investigated using Born-Oppenheimer direct dynamics simulations. The trajectory integrations were performed on-the-fly at the density functional B3LYP/6-31+G* level of electronic structure theory to investigate the atomic level decomposition mechanisms. Simulation results show that C-S cleavage accompanied by an intramolecular proton transfer to C is the dominant initial dissociation step. Acetylene was observed as primary decomposition product and the results are in agreement with previous experimental studies.


Sign in / Sign up

Export Citation Format

Share Document