Large-amplitude Dust Acoustic Solitons in an Opposite Polarity Dusty Plasma with Generalized Polarization Force

2021 ◽  
Author(s):  
Mahmood A. H. Khaled ◽  
Mohamed A. Shukri ◽  
Yusra A. A. Hager
2014 ◽  
Vol 80 (3) ◽  
pp. 517-528 ◽  
Author(s):  
S. K. Zaghbeer ◽  
H. H. Salah ◽  
N. H. Sheta ◽  
E. K. El-Shewy ◽  
A. Elgarayhi

A theoretical investigation has been made of obliquely propagating nonlinear electrostatic shock structures. The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger (KdV-Burger) equation for dust acoustic shock waves in a homogeneous system of a magnetized collisionless plasma comprising a four-component dusty plasma with massive, micron-sized, positively, negatively dust grains and non-extensive electrons and ions. The effect of dust viscosity coefficients of charged dusty plasma of opposite polarity and the non-extensive parameters of electrons and ions have been studied. The behavior of the oscillatory and monotonic shock waves in dusty plasma has been investigated. It has been found that the presence of non-extensive parameters significantly modified the basic properties of shock structures in space environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
N. S. Saini ◽  
Kuldeep Singh ◽  
Papihra Sethi

The interaction of dust-acoustic (DA) shock waves in a magnetized dusty plasma under the influence of nonextensively modified polarization force is investigated. The plasma model consists of negatively charged dust, Maxwellian electrons, nonextensive ions, and polarization force. In this investigation, we have derived the expression of polarization force in the presence of nonextensive ions and illustrated the head-on collision between two DA shock waves. The extended Poincaré–Lighthill–Kuo (PLK) method is employed to obtain the two-sided Korteweg–de Vries–Burgers (KdVB) equations and phase shifts of two shock waves. The trajectories and phase shifts of negative potential dust-acoustic shock waves after collision are examined. The combined effects of various physical parameters such as polarization force, nonextensivity of ions, viscosity of dust, and magnetic field strength on the phase shifts of DA shock waves have been studied. The present investigation might be useful to study the process of collision of nonlinear structures in space dusty plasma such as planetary rings where non-Maxwellian particles such as nonextensive ions, negatively charged dust, and electrons are present.


Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 230-238
Author(s):  
Jebun Naher Sikta ◽  
Nure Alam Chowdhury ◽  
Abdul Mannan ◽  
Sharmin Sultana ◽  
A. A. Mamun

The formation of gigantic dust-acoustic (DA) rouge waves (DARWs) in an electron depleted unmagnetized opposite polarity dusty plasma system is theoretically predicted. The nonlinear Schrödinger equation (NLSE) is derived by employing the reductive perturbation method. It is found that the NLSE leads to the modulational instability (MI) of DA waves (DAWs), and to the formation of DARWs, which are caused by to the effects of nonlinearity and dispersion in the propagation of DAWs. The conditions for the MI of DAWs and the basic properties of the generated DARWs are numerically identified. It is also seen that the striking features (viz., instability criteria, amplitude and width of DARWs, etc.) of the DAWs are significantly modified by the effects of super-thermality of ions, number density, mass and charge state of the plasma species, etc. The results obtained from the present investigation will be useful in understanding the MI criteria of DAWs and associated DARWs in electron depleted unmagnetized opposite polarity dusty plasma systems like Earth’s mesosphere (where the D-region plasma could suffer from electron density depletion), cometary tails, Jupiter’s magnetosphere, and F-ring of Saturn, etc.


Sign in / Sign up

Export Citation Format

Share Document