generalized polarization
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 180
Author(s):  
Jongho Park ◽  
Keiichi Asada ◽  
Masanori Nakamura ◽  
Motoki Kino ◽  
Hung-Yi Pu ◽  
...  

Abstract The linear polarization images of the jet in the giant elliptical galaxy M87 have previously been observed with Very Long Baseline Array at 7 mm. They exhibit a complex polarization structure surrounding the optically thick and compact subparsec-scale core. However, given the low level of linear polarization in the core, it is required to verify that this complex structure does not originate from residual instrumental polarization signals in the data. We have performed a new analysis of the same data sets observed in four epochs by using the Generalized Polarization CALibration pipeline (GPCAL). This novel instrumental polarization calibration pipeline overcomes the limitations of LPCAL, a conventional calibration tool used in the previous M87 studies. The resulting images show a compact linear polarization structure with its peak nearly coincident with the total intensity peak, which is significantly different from the results of previous studies. The core linear polarization is characterized as fractional polarization of ∼0.2%–0.6% and polarization angles of ∼66°–92°, showing moderate variability. We demonstrate that, based on tests with synthetic data sets, LPCAL using calibrators having complex polarization structures cannot achieve sufficient calibration accuracy to obtain the true polarization image of M87 due to a breakdown of the “similarity approximation.” We find that GPCAL obtains more accurate D-terms than LPCAL by using observed closure traces of calibrators that are insensitive to both antenna gain and polarization leakage corruptions. This study suggests that polarization imaging of very weakly polarized sources has become possible with the advanced instrumental polarization calibration techniques.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1381
Author(s):  
Sandrine Verstraeten ◽  
Lucy Catteau ◽  
Laila Boukricha ◽  
Joelle Quetin-Leclercq ◽  
Marie-Paule Mingeot-Leclercq

Staphylococcus aureus is an opportunistic pathogen and the major causative agent of life-threatening hospital- and community-acquired infections. A combination of antibiotics could be an opportunity to address the widespread emergence of antibiotic-resistant strains, including Methicillin-Resistant S. aureus (MRSA). We here investigated the potential synergy between ampicillin and plant-derived antibiotics (pentacyclic triterpenes, ursolic acid (UA) and oleanolic acid (OA)) towards MRSA (ATCC33591 and COL) and the mechanisms involved. We calculated the Fractional Inhibitory Concentration Index (FICI) and demonstrated synergy. We monitored fluorescence of Bodipy-TR-Cadaverin, propidium iodide and membrane potential-sensitive probe for determining the ability of UA and OA to bind to lipoteichoic acids (LTA), and to induce membrane permeabilization and depolarization, respectively. Both pentacyclic triterpenes were able to bind to LTA and to induce membrane permeabilization and depolarization in a dose-dependent fashion. These effects were not accompanied by significant changes in cellular concentration of pentacyclic triterpenes and/or ampicillin, suggesting an effect mediated through lipid membranes. We therefore focused on membranous effects induced by UA and OA, and we investigated on models of membranes, the role of specific lipids including phosphatidylglycerol and cardiolipin. The effect induced on membrane fluidity, permeability and ability to fuse were studied by determining changes in fluorescence anisotropy of DPH/generalized polarization of Laurdan, calcein release from liposomes, fluorescence dequenching of octadecyl-rhodamine B and liposome-size, respectively. Both UA and OA showed a dose-dependent effect with membrane rigidification, increase of membrane permeabilization and fusion. Except for the effect on membrane fluidity, the effect of UA was consistently higher compared with that obtained with OA, suggesting the role of methyl group position. All together the data demonstrated the potential role of compounds acting on lipid membranes for enhancing the activity of other antibiotics, like ampicillin and inducing synergy. Such combinations offer an opportunity to explore a larger antibiotic chemical space.


2021 ◽  
Vol 22 (16) ◽  
pp. 8452
Author(s):  
Paulina Stolarek ◽  
Przemysław Bernat ◽  
Dominika Szczerbiec ◽  
Antoni Różalski

Proteus mirabilis-mediated CAUTIs are usually initiated by the adherence of bacteria to a urinary catheter surface. In this paper, three isolates of different origin and exhibiting different adhesion abilities were investigated in search of any changes in lipidome components which might contribute to P. mirabilis adhesion to catheters. Using GC-MS and LC-MS/MS techniques, 21 fatty acids and 27 phospholipids were identified in the examined cells. The comparison of the profiles of phospholipids and fatty acids obtained for catheter-attached cells and planktonic cells of the pathogens indicated C11:0 and PE 37:2 levels as values which could be related to P. mirabilis adhesion to a catheter, as well as cis C16:1, PE 32:0, PE 33:0, PE 38:2, PG 33:1, PG 34:0, PE 30:1, PE 32:1 and PG 30:2 levels as values which could be associated with cell hydrophobicity. Based on DiBAC4 (3) fluorescence intensity and an affinity to p-xylene, it was found that the inner membrane depolarization, as well as strong cell-surface hydrophobicity, were important for P. mirabilis adhesion to a silicone catheter. A generalized polarization of Laurdan showed lower values for P. mirabilis cells attached to the catheter surface than for planktonic cells, suggesting lower packing density of membrane components of the adherent cells compared with tightly packed, stiffened membranes of the planktonic cells. Taken together, these data indicate that high surface hydrophobicity, fluidization and depolarization of P. mirabilis cell membranes enable colonization of a silicone urinary catheter surface.


2021 ◽  
Vol 22 (11) ◽  
pp. 6087
Author(s):  
Marta Salvador-Castell ◽  
Nicholas J. Brooks ◽  
Roland Winter ◽  
Judith Peters ◽  
Philippe M. Oger

The modification of archaeal lipid bilayer properties by the insertion of apolar molecules in the lipid bilayer midplane has been proposed to support cell membrane adaptation to extreme environmental conditions of temperature and hydrostatic pressure. In this work, we characterize the insertion effects of the apolar polyisoprenoid squalane on the permeability and fluidity of archaeal model membrane bilayers, composed of lipid analogues. We have monitored large molecule and proton permeability and Laurdan generalized polarization from lipid vesicles as a function of temperature and hydrostatic pressure. Even at low concentration, squalane (1 mol%) is able to enhance solute permeation by increasing membrane fluidity, but at the same time, to decrease proton permeability of the lipid bilayer. The squalane physicochemical impact on membrane properties are congruent with a possible role of apolar intercalants on the adaptation of Archaea to extreme conditions. In addition, such intercalant might be used to cheaply create or modify chemically resistant liposomes (archeaosomes) for drug delivery.


2021 ◽  
Author(s):  
Nicolas Faerber ◽  
Christoph Westerhausen

Abstract Employing fluorescence spectroscopy and the membrane-embedded dye Laurdan we experimentally show broad order-disorder-transitions in membranes of various cell lines and red blood cell ghosts. A custom-made setup allows for the determination of fluorescence spectra and the determination of the generalized polarization (GP) as a measure for membrane order in the temperature range of -40°C to +90°C of µl-volumes of cell suspension. While artificial lipid membranes like phosphatidylcholine show sharp transitions as known from calorimetry measurements, living cells in a physiological temperature range do only show linear changes in generalized polarization. However, extending the temperature range shows the existence of broad transitions and their sensitivity to cholesterol content, pH and anaesthetic. Moreover, adaptation to culture conditions like decreased temperature and morphological changes like detachment of adherent cells or dendrite growth are accompanied by changes in membrane order as well. The observed GP changes are equivalent to temperature changes dT in the range of -12K < dT <+6K


2021 ◽  
Vol 22 (7) ◽  
pp. 3368
Author(s):  
Justyna B. Startek ◽  
Alina Milici ◽  
Robbe Naert ◽  
Andrei Segal ◽  
Yeranddy A. Alpizar ◽  
...  

The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.


Author(s):  
R. Raziani ◽  
M. V. Takook

The gauge theory of the de Sitter group, [Formula: see text], in the ambient space formalism has been considered in this paper. This method is important to construction of the de Sitter super-conformal gravity and Quantum gravity. [Formula: see text] gauge vector fields are needed which correspond to [Formula: see text] generators of the de Sitter group. Using the gauge-invariant Lagrangian, the field equations of these vector fields have been obtained. The gauge vector field solutions are recalled. By using these solutions, the spin-[Formula: see text] gauge potentials has been constructed. There are two possibilities for presenting this tensor field: rank-[Formula: see text] symmetric and mixed symmetry rank-[Formula: see text] tensor fields. To preserve the conformal transformation, a spin-[Formula: see text] field must be represented by a mixed symmetry rank-[Formula: see text] tensor field, [Formula: see text]. This tensor field has been rewritten in terms of a generalized polarization tensor field and a de Sitter plane wave. This generalized polarization tensor field has been calculated as a combination of vector polarization, [Formula: see text], and tensor polarization of rank-2, [Formula: see text], which can be used in the gravitational wave consideration. There is a certain extent of arbitrariness in the choice of this tensor and we fix it in such a way that, in the limit, [Formula: see text], one obtains the polarization tensor in Minkowski spacetime. It has been shown that under some simple conditions, the spin-[Formula: see text] mixed symmetry rank-[Formula: see text] tensor field can be simultaneously transformed by unitary irreducible representation of de Sitter and conformal groups ([Formula: see text]).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Tapia ◽  
N. Vera ◽  
Joao Aguilar ◽  
M. González ◽  
S. A. Sánchez ◽  
...  

AbstractA correlated human red blood cell membrane fluctuation dependent on d-glucose concentration was found with dual time resolved membrane fluctuation spectroscopy (D-TRMFS). This new technique is a modified version of the dual optical tweezers method that has been adapted to measure the mechanical properties of red blood cells (RBCs) at distant membrane points simultaneously, enabling correlation analysis. Mechanical parameters under different d-glucose concentrations were obtained from direct membrane flickering measurements, complemented with membrane fluidity measurements using Laurdan Generalized Polarization (GP) Microscopy. Our results show an increase in the fluctuation amplitude of the lipid bilayer, and a decline in tension value, bending modulus and fluidity as d-glucose concentration increases. Metabolic mechanisms are proposed as explanations for the results.


Sign in / Sign up

Export Citation Format

Share Document