Effects of Prandtl number in two-dimensional turbulent convection

2021 ◽  
Author(s):  
Jian-Chao He ◽  
Ming-Wei Fang ◽  
Zhen-Yuan Gao ◽  
Shi-Di Huang ◽  
Yun Bao
1991 ◽  
Vol 130 ◽  
pp. 57-61
Author(s):  
Josep M. Massaguer

AbstractThermal convection in the Sun and cool stars is often modeled with the assumption of an effective Prandtl number σ ≃ 1. Such a parameterization results in masking of the presence of internal shear layers which, for small σ, might control the large scale dynamics. In this paper we discuss the relevance of such layers in turbulent convection. Implications for heat transport – i.e. for the Nusselt number power law – are also discussed.


2017 ◽  
Vol 29 (11) ◽  
pp. 111102 ◽  
Author(s):  
Andrea Mazzino

1998 ◽  
Vol 374 ◽  
pp. 145-171 ◽  
Author(s):  
DANIEL HENRY ◽  
MARC BUFFAT

The convective flows which arise in shallow cavities filled with low-Prandtl-number fluids when subjected to a horizontal temperature gradient are studied numerically with a finite element method. Attention is focused on a rigid cavity with dimensions 4×2×1, for which experimental data are available. The three-dimensional results indicate that, after a relative concentration of the initial Hadley circulation, a transition to time-dependent flows occurs in the form of a roll oscillation with a purely dynamical origin. This transition corresponds to a Hopf bifurcation with a breaking of symmetry that gives some specific properties to the time evolution of the flow: these properties are shown to be the result of the general behaviour of the dynamical systems. Calculations performed in the case of mercury compare well with the experiments with similar power spectra of the temperature, and this validates the analysis of the nature of the global flow performed in the limiting case Pr=0. All these results are discussed with respect to the linear and nonlinear analyses and to other computational experiments. Numerical results obtained in the corresponding two-dimensional situation give a different transition to the time-dependent flow: it is shown that in the three-dimensional cavity this type of two-dimensional transition is less probable than the observed transition with breaking of symmetry.


2008 ◽  
Vol 22 (20) ◽  
pp. 3421-3431
Author(s):  
MALAY K. NANDY

We evaluate the universal turbulent Prandtl numbers in the energy and enstrophy régimes of the Kraichnan-Batchelor spectra of two-dimensional turbulence using a self-consistent mode-coupling formulation coming from a renormalized perturbation expansion coupled with dynamic scaling ideas. The turbulent Prandtl number is found to be exactly unity in the (logarithmic) enstrophy régime, where the theory is infrared marginal. In the energy régime, the theory being finite, we extract singularities coming from both ultraviolet and infrared ends by means of Laurent expansions about these poles. This yields the turbulent Prandtl number σ ≈ 0.9 in the energy régime.


Sign in / Sign up

Export Citation Format

Share Document