relative concentration
Recently Published Documents


TOTAL DOCUMENTS

658
(FIVE YEARS 166)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
Patrick Maget ◽  
Pierre Manas ◽  
Jean-Francois Artaud ◽  
Clarisse Bourdelle ◽  
Jerome B Bucalossi ◽  
...  

Abstract Achieving a successful plasma current ramp-up in a full Tungsten tokamak can be challenging due to the large core radiation (and resulting low core temperature) that can be faced with this heavy metallic impurity if its relative concentration is too high. Nitrogen injection during the plasma current ramp-up of WEST discharges greatly improves core temperature and Magneto-Hydro-Dynamic stability. Experimental measurements and integrated simulations with the RAPTOR code complemented with the Qualikiz Neural Network for computing turbulent transport allow a detailed understanding of the mechanisms at play. Increased edge radiation during this transient phase is shown to improve confinement properties, driving higher core temperature and better MHD stability. This also leads to increased operation margins with respect to Tungsten contamination.


2022 ◽  
Vol 130 (1) ◽  
pp. 199
Author(s):  
Г.Е. Малашкевич ◽  
В.В. Ковгар ◽  
А.А. Романенко ◽  
И.И. Азарко ◽  
В.Н. Сигаев ◽  
...  

Fused yttrium-alumoborate glasses doped with ytterbium, silicon, chromium, and sodium were synthesized. The influence of the matrix on the "spectroscopic behavior" of chromium ions and the efficiency of their sensitization of Yb3+ luminescence was established by spectral-luminescence and EPR-studies. It was found that (1) chromium in alkali-free glasses is mainly in the oxidation degree Cr(III) with an appreciable admixture of Cr(IV) and Cr(V), (2) the partial replacement of Al2O3 or B2O3 by SiO2 and Y2O3 by Yb2O3 affects to a different extent the relative concentration of optical centers of chromium ions, (3) the addition of alkali results in the formation of Cr(VI) centers as a result of oxidation of less charged chromium ions and predominantly tetracoordinated Cr4+ and Cr5+, (4) Cr3+ ions make the main contribution to the luminescence sensitization of Yb3+ ions, while Cr4+ ions and to a lesser extent Cr5+ play the role of luminescence quencher and internal filter. Sensitization of Yb3+ luminescence through the charge transfer band in Cr(VI) was found. An alkaline glass doped with Cr and Yb upon excitation through the sensitizer produced a luminescence quantum yield of 32% and the conditions for its enhancement were considered. It is shown that the temperature quenching of luminescence of CrYb-containing glasses is significantly lower than that of Cr-containing glasses.


Author(s):  
Giles Atkinson ◽  
Paola Ovando

AbstractAccounting for ecosystems is increasingly central to natural capital accounting. What is missing from this, however, is an answer to questions about how natural capital is distributed. That is, who consumes ecosystem services and who owns or manages the underlying asset(s) that give rise to ecosystem services. In this paper, we examine the significance of the ownership of land on which ecosystem assets (or ecosystem types) is located in the context of natural capital accounting. We illustrate this in an empirical application to two ecosystem services and a range of ecosystem types and land ownership in Scotland, a context in which land reform debates are longstanding. Our results indicate the relative importance of private land in ecosystem service supply, rather than land held by the public sector. We find relative concentration of ownership for land providing comparatively high amounts of carbon sequestration. For air pollution removal, however, the role of smaller to medium sized, mostly privately owned, land holdings closer to urban settlements becomes more prominent. The contributions in this paper, we argue, represent important first steps in anticipating distributional impacts of natural capital (and related) policy in natural capital accounts as well as connecting these frameworks to broader concerns about wealth disparities across and within countries.


2021 ◽  
Author(s):  
Clémence Paul ◽  
Clément Piel ◽  
Joana Sauze ◽  
Nicolas Pasquier ◽  
Frédéric Prié ◽  
...  

Abstract. The isotopic composition of dioxygen in the atmosphere is a global tracer which depends on the biosphere flux of dioxygen toward and from the atmosphere (photosynthesis and respiration) as well as exchanges with the stratosphere. When measured in fossil air trapped in ice cores, the relative concentration of 16O, 17O and 18O of O2 can be used for several applications such as ice core dating and past global productivity reconstruction. However, there are still uncertainties about the accuracy of these tracers as they depend on the integrated isotopic fractionation of different biological processes of dioxygen production and uptake, for which we currently have very few independent estimates. Here we determined the respiration and photosynthesis fractionation coefficients for atmospheric dioxygen from experiments carried out in a replicated vegetation-soil-atmosphere analog of the terrestrial biosphere in closed chambers with growing Festuca arundinacea. The values for 18O discrimination during soil respiration and dark respiration in leave are equal to −12.3 ± 1.7 ‰ and −19.1 ± 2.4 ‰, respectively. We also found a value for terrestrial photosynthetic fractionation equal to +3.7 ± 1.3 ‰. This last estimate suggests that the contribution of terrestrial productivity in the Dole effect may have been underestimated in previous studies.


2021 ◽  
pp. 1093-1111
Author(s):  
Mateus Boldrine Abrita ◽  
Daniel Amorim Souza Centurião ◽  
Angelo Rondina Neto ◽  
Rafaella Stradiotto Vignandi

The Latin American Integration Route (RILA) corresponds to the materialization of an old desire to integrate the peoples of South America. This route will connect important municipalities in Brazil, Paraguay, Argentina, and Chile. In the state of Mato Grosso do Sul (MS), it will connect important municipalities, and bring opportunities and threats. The objective of the study was to analyze the productive structure of the municipalities in Mato Grosso do Sul that will be directly affected by the RILA to better understand this process. For this purpose, we used an Exploratory Spatial Data Analysis (Spatial EDA) and the spatial Locational Quotient (sLQ) of the sectorial jobs of the municipalities of the State. The results point out a spatial inequality in productive sectors, delimiting "sectorial islands". In the industrial sector, the northeastern regions and the surroundings of the capital, Campo Grande, stand out. The northeast region of the State also stands out in the Civil Construction sector and, together with the north-central part of the MS, in the agriculture and livestock sector. In the trade sector, the southern region of the MS stands out, with proximity to Paraguay. In the services sector, there is a relative concentration in the capital and the extreme south of the State. In conclusion, we point out the urgent need for public policies to expand opportunities and mitigate the threats of integration managed by the route.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1401
Author(s):  
Xuanlai Chen ◽  
Guochao Yan ◽  
Xianglin Yang ◽  
Guang Xu

In order to explore the adsorption characteristics of sulfonate gemini surfactants on the surface of lignite, the molecular dynamics simulation method was used, and A kind of sulfonic acid bis sodium salt (S2) and the sodium dodecyl sulfate (SDS) were selected. A binary model of surfactant/lignite adsorption system and a ternary model of water/surfactant/lignite system were constructed, and a series of properties such as adsorption configuration, interaction energy, order parameters, relative concentration distribution, number of hydrogen bonds, etc., were analyzed. The results showed that the adsorption strength of S2 on the surface of lignite was higher than that of SDS. The results indicated that the large-angle molecular chain in S2 tended to become smaller, the small-angle molecular chain tended to become larger, and the angle between the molecular chains and the Z axis tended to be concentrated, making the formed network structure denser during the adsorption process. The number of hydrogen bonds in the water-coal system was 42, and the number of hydrogen bonds in the system after S2 adsorption was 15, which was much lower than the 23 hydrogen bonds in the system after SDS adsorption, and S2 could better adsorb and wrap the oxygen-containing groups on the surface of the lignite. The comparative study of the adsorption characteristics of the two surfactants on the surface of lignite can help us better understand the influence of the surfactant structure on the adsorption strength. The research results have important theoretical and practical significance for developing new surfactants, and enriching and developing the basic theory of coal wettability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3329
Author(s):  
Xinjian Geng ◽  
Mohamed Abdellah ◽  
Robert Bericat Vadell ◽  
Matilda Folkenant ◽  
Tomas Edvinsson ◽  
...  

The proliferation of the internet of things (IoT) and other low-power devices demands the development of energy harvesting solutions to alleviate IoT hardware dependence on single-use batteries, making their deployment more sustainable. The propagation of energy harvesting solutions is strongly associated with technical performance, cost and aesthetics, with the latter often being the driver of adoption. The general abundance of light in the vicinity of IoT devices under their main operation window enables the use of indoor and outdoor photovoltaics as energy harvesters. From those, highly transparent solar cells allow an increased possibility to place a sustainable power source close to the sensors without significant visual appearance. Herein, we report the effect of hole transport layer Li-TFSI dopant content on semi-transparent, direct plasmonic solar cells (DPSC) with a transparency of more than 80% in the 450–800 nm region. The findings revealed that the amount of oxidized spiro-OMeTAD (spiro+TFSI−) significantly modulates the transparency, effective conductance and conditions of device performance, with an optimal performance reached at around 33% relative concentration of Li-TFSI concerning spiro-OMeTAD. The Li-TFSI content did not affect the immediate charge extraction, as revealed by an analysis of electron–phonon lifetime. Hot electrons and holes were injected into the respective layers within 150 fs, suggesting simultaneous injection, as supported by the absence of hysteresis in the I–V curves. The spiro-OMeTAD layer reduces the Au nanoparticles’ reflection/backscattering, which improves the overall cell transparency. The results show that the system can be made highly transparent by precise tuning of the doping level of the spiro-OMeTAD layer with retained plasmonics, large optical cross-sections and the ultrathin nature of the devices.


2021 ◽  
Author(s):  
Matthew D. Shortridge ◽  
Wen Yang ◽  
Matthew J. Walker ◽  
Gabriele Varani

AbstractThe microRNAs are non-coding RNAs which post-transcriptionally regulate the expression of a majority of eukaryotic genes, and whose dysregulation is a driver of many human diseases. Here we report the discovery of a very slow (0.1 sec) conformational rearrangement at the Dicer cleavage site of pre-miR-21 which regulates the relative concentration of readily processed and inefficiently processed structural states. We show this dynamic switch is affected by single nucleotide mutations and can be biased by small molecule and peptide ligands, which can direct the microRNA to occupy the inefficiently processed state and reduce processing efficiency. This result reveals a new mechanism of RNA regulation and suggests a chemical approach to suppressing or activating pathogenic microRNAs by selective stabilization of the unprocessed or processed state.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tim Rice McClanahan ◽  
Maxwell Kodia Azali

Current models of the future of coral reefs rely on threshold (TM) and multivariate environmental variability models (VM) that vary in how they account for spatial and temporal environmental heterogeneity. Here, a VM based on General Additive Model (GAM) methods evaluated the empirical relationships between coral cover (n = 905 sites pooled to 318 reef cells of the Western and Central Indian Ocean Provinces) and 15 potentially influential variables. Six environmental and one fisheries management variables were selected as significant including SST shape distributions, dissolved oxygen, calcite, and fisheries management. Common predictive variables, including cumulative degree-heating weeks (DHW), pH, maximum light, SST bimodality and rate of rise, and two multivariate metrics were either weak or not significant predictors of coral cover. A spatially-resolved 2020 baseline for future predictions of coral cover within 11,678 reef ∼6.25 km2 cells within 13 ecoregions and 4 fisheries management categories using the 7 top VM variables was established for comparing VM and TM coral cover prediction for the year 2050. We compared the two model’s predictions for high and low Relative Concentration Pathway (CMIP5; RCP8.5 and 2.6) scenarios using the four available future-cast SST variables. The excess heat (DHW)-coral mortality relationship of the TM predicted considerably lower coral cover in 2050 than the VM. For example, for the RCP8.5 and RCP2.6 scenarios, the decline in coral for the TM predicted was 81 and 58% compared to a 29 and 20% for the VM among reef cells with >25% coral cover in 2020, if a proposed optimal fisheries management was achieved. Despite differences, coral cover predictions for the VM and TM overlapped in two environmental regions located in the southern equatorial current region of the Indian Ocean. Historical and future patterns of acute and chronic stresses are expected to be more influential than cumulative heat stress in predicting coral cover, which is better accounted for by the VM than the TM.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7217
Author(s):  
Qing Han ◽  
Cunbao Deng ◽  
Zhixin Jin ◽  
Tao Gao

In order to study differences in the methane adsorption characteristics of coal pores of different metamorphic degrees, 4 nm pore structure models based on three typical coal structure models with different metamorphic degrees were constructed. Based on the molecular mechanics and dynamics theory, the adsorption characteristics of methane in different coal rank pores were simulated by the grand canonical Monte Carlo (GCMC) and molecular dynamics methods. The isothermal adsorption curve, Van der Waals energy, concentration distribution, and diffusion coefficient of methane under different conditions were analyzed and calculated. The results showed that at the same pore size, the adsorption capacity of CH4 is positively correlated with pressure and metamorphic degree of coal, and the adsorption capacity of CH4 in high metamorphic coal is more affected by temperature. The relative concentration of CH4 in high-order coal pores is low, and the relative concentration at higher temperature and pressure conditions is high. The CH4 diffusion coefficient in high-rank coal is low, corresponding to the strong Van der Waals interaction between CH4 and coal. The research results are of great significance for further exploration of the interaction mechanism between CH4 and coal with different metamorphic degrees and can provide theoretical support for the selection of gas extraction parameters.


Sign in / Sign up

Export Citation Format

Share Document