Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses

2021 ◽  
Author(s):  
Fengzheng Zhu ◽  
Xiaoyu Liu ◽  
Yue Guo ◽  
Ningyue Wang ◽  
Li-Guang Jiao ◽  
...  
2018 ◽  
Vol 509 ◽  
pp. 145-150 ◽  
Author(s):  
Anne D. Müller ◽  
Eric Kutscher ◽  
Anton N. Artemyev ◽  
Lorenz S. Cederbaum ◽  
Philipp V. Demekhin

2016 ◽  
Vol 194 ◽  
pp. 495-508 ◽  
Author(s):  
Christian Burger ◽  
Nora G. Kling ◽  
Robert Siemering ◽  
Ali S. Alnaser ◽  
Boris Bergues ◽  
...  

The migration of hydrogen atoms resulting in the isomerization of hydrocarbons is an important process which can occur on ultrafast timescales. Here, we visualize the light-induced hydrogen migration of acetylene to vinylidene in an ionic state using two synchronized 4 fs intense laser pulses. The first pulse induces hydrogen migration, and the second is used for monitoring transient structural changes via Coulomb explosion imaging. Varying the time delay between the pulses reveals the migration dynamics with a time constant of 54 ± 4 fs as observed in the H+ + H+ + CC+ channel. Due to the high temporal resolution, vibrational wave-packet motions along the CC- and CH-bonds are observed. Even though a maximum in isomerization yield for kinetic energy releases above 16 eV is measured, we find no indication for a backwards isomerization — in contrast to previous measurements. Here, we propose an alternative explanation for the maximum in isomerization yield, namely the surpassing of the transition state to the vinylidene configuration within the excited dication state.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elmina Kabouraki ◽  
Vasileia Melissinaki ◽  
Amit Yadav ◽  
Andrius Melninkaitis ◽  
Konstantina Tourlouki ◽  
...  

Abstract Optics manufacturing technology is predicted to play a major role in the future production of integrated photonic circuits. One of the major drawbacks in the realization of photonic circuits is the damage of optical materials by intense laser pulses. Here, we report on the preparation of a series of organic–inorganic hybrid photoresists that exhibit enhanced laser-induced damage threshold. These photoresists showed to be candidates for the fabrication of micro-optical elements (MOEs) using three-dimensional multiphoton lithography. Moreover, they demonstrate pattern ability by nanoimprint lithography, making them suitable for future mass production of MOEs.


2012 ◽  
Vol 137 (4) ◽  
pp. 044112 ◽  
Author(s):  
Mohsen Vafaee ◽  
Firoozeh Sami ◽  
Babak Shokri ◽  
Behnaz Buzari ◽  
Hassan Sabzyan

2012 ◽  
Vol 31 (1) ◽  
pp. 23-28 ◽  
Author(s):  
V.V. Korobkin ◽  
M.Yu. Romanovskiy ◽  
V.A. Trofimov ◽  
O.B. Shiryaev

AbstractA new concept of generating tight bunches of electrons accelerated to high energies is proposed. The electrons are born via ionization of a low-density neutral gas by laser radiation, and the concept is based on the electrons acceleration in traps arising within the pattern of interference of several relativistically intense laser pulses with amplitude fronts tilted relative to their phase fronts. The traps move with the speed of light and (1) collect electrons; (2) compress them to extremely high density in all dimensions, forming electron bunches; and (3) accelerate the resulting bunches to energies of at least several GeV per electron. The simulations of bunch formation employ the Newton equation with the corresponding Lorentz force.


Sign in / Sign up

Export Citation Format

Share Document