Geometric quantities of lower doubly excited bound states of helium

2021 ◽  
Author(s):  
Chengdong Zhou ◽  
Yuewu Yu ◽  
Sanjiang Yang ◽  
Haoxue Qiao
Keyword(s):  
2021 ◽  
Vol 2015 (1) ◽  
pp. 012070
Author(s):  
D. Kornovan ◽  
E. Vlasiuk ◽  
A. Poddubny ◽  
M. Petrov

Abstract In modern quantum optics chiral waveguide quantum-electrodynamical (wQED) systems are attracting a lot of attention from the perspective of fundamental science, and possible interesting applications. In our work we theoretically analyze the eigenstates in a two-excitation domain of an ensemble of two-level atoms that are periodically spaced, and asymmetrically coupled to a guided mode. We found that in a regime when all atoms emit photons in-phase, most eigenstates in such a system can be well-approximated and described through the eigenstates from a single excitation domain, while the rest present a superposition of bound states with two strongly attracting excitations, and states, for which the excitations strongly repel from each other occupying the opposite edges of the system.


1988 ◽  
Vol 102 ◽  
pp. 129-132
Author(s):  
K.L. Baluja ◽  
K. Butler ◽  
J. Le Bourlot ◽  
C.J. Zeippen

SummaryUsing sophisticated computer programs and elaborate physical models, accurate radiative and collisional atomic data of astrophysical interest have been or are being calculated. The cases treated include radiative transitions between bound states in the 2p4and 2s2p5configurations of many ions in the oxygen isoelectronic sequence, the photoionisation of the ground state of neutral iron, the electron impact excitation of the fine-structure forbidden transitions within the 3p3ground configuration of CℓIII, Ar IV and K V, and the mass-production of radiative data for ions in the oxygen and fluorine isoelectronic sequences, as part of the international Opacity Project.


2014 ◽  
Vol 59 (11) ◽  
pp. 1065-1077 ◽  
Author(s):  
A.V. Nesterov ◽  
◽  
V.S. Vasilevsky ◽  
T.P. Kovalenko ◽  
◽  
...  

2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Abdoulaye Ndao ◽  
Liyi Hsu ◽  
Wei Cai ◽  
Jeongho Ha ◽  
Junhee Park ◽  
...  

AbstractOne of the key challenges in biology is to understand how individual cells process information and respond to perturbations. However, most of the existing single-cell analysis methods can only provide a glimpse of cell properties at specific time points and are unable to provide cell secretion and protein analysis at single-cell resolution. To address the limits of existing methods and to accelerate discoveries from single-cell studies, we propose and experimentally demonstrate a new sensor based on bound states in the continuum to quantify exosome secretion from a single cell. Our optical sensors demonstrate high-sensitivity refractive index detection. Because of the strong overlap between the medium supporting the mode and the analytes, such an optical cavity has a figure of merit of 677 and sensitivity of 440 nm/RIU. Such results facilitate technological progress for highly conducive optical sensors for different biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document